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FOREWORD

This publication, the Final Evaluation Report TIS Trusted XENIX version 4.0 is being issued by
the National Computer Security Center under the authority of and in accordance with DoD Directive 5215.1,
“Computer Security Evaluation Center.” The purpose of this report is to document the results of the formal
evaluation of TIS Trusted XENIX version 4.0 operating system. The requirements stated in this report
are taken from Department of Defense Trusted Computer System Evaluation Criteria, dated
December 1985.

Approved:

Patrick R. Gallagher, Jr. January 1994
Director,
National Computer Security Center
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EXECUTIVE SUMMARY

The security protection provided by Trusted Information Systems, Inc.’s (TIS) Trusted XENIX version
4.0 operating system, configured according to the most secure manner described in the Trusted XENIX
System Administration Manual [SYAD] and Starting Trusted XENIX [STXE], running on the hardware base
described in Appendix A on page 117, has been examined by the National Security Agency (NSA), Trusted
Product and Network Security Evaluation Division. The security features of Trusted XENIX were examined
against the requirements specified by the DoD Trusted Computer System Evaluation Criteria (TCSEC) dated
December 1985 in order to establish a candidate rating.

The NSA Trusted Product and Network Security Evaluation team and TIS Vendor Security Analysts (VSAs)
have determined that the highest class at which Trusted XENIX satisfies all the specified requirements of
the Criteria is class B2.

A system that has been rated as being a B division system provides a Trusted Computing Base (TCB) that
preserves the integrity of sensitivity labels and uses them to enforce a set of mandatory access control rules.
The system developer has provided the security policy model on which the TCB is based and furnished a
specification of the TCB and evidence that the reference monitor concept has been implemented.

The Trusted XENIX system consists of the Trusted XENIX operating system, version 4.0, running on the

International Business Machines (IBM) Personal Computer AT (IBM PC/AT),
IBM Personal System/2 (PS/2),!

AST 386/25,

AST Premium 386/33 (AST 386/33),

GRIDCASE 1537,

GRiD 386sx-MFP,

HP Vectra 386,

NCR PC386sx,

NEC PowerMate 386/25,

NEC BusinessMate 386/25,

TREND Telecommunications Limited Model 635 PC (Trend 635 PC),
Unisys Personal Workstation 2 Series 800/20C (Unisys 820 COP),
WANG 382T,

WANG 382,

or Zenith Z-386/33 Workstation.

It is a multi-user, multi-tasking system which can support up to six concurrent users.

In addition to providing user-specified access controls (i.e., discretionary access controls) through protection
bits and access control lists, Trusted XENIX also provides the additional controls required to properly

1Models 50, 60, 70, 70T, 70P, or 80.

xi
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separate sensitive information from unauthorized users (i.e., mandatory access controls). In addition to the
B2 requirements, Trusted XENIX provides the features associated with a B3 level of Discretionary Access
Control, Trusted Path, and Trusted Facility Management.

xii
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Chapter 1

Introduction

In December 1987, the National Security Agency (NSA) began a formal product evaluation of Secure XENTX,
a product of International Business Machines Corporation (IBM). In June 1989, ownership of the product
was transferred to Trusted Information Systems, Inc. (TIS) and the product renamed to Trusted XENIX.
Subsequently, Trusted XENIX, version 2.0, was formally evaluated and placed on the Evaluated Products
List (EPL) in January of 1991.

In June 1991, the NSA conducted a preliminary technical assessment of an effort by TIS to bring new
hardware platforms (i.e., IBM PC/AT clones) into the evaluated configuration. An evaluation team was
then assigned to evaluate the new configuration. The objective of that evaluation was to rate the Trusted
XENIX version 3.0 system against the Trusted Computer System Evaluation Criteria (TCSEC), and to gain
insight into the process of porting a trusted operating system to new hardware platforms as input into the
future B2 and higher Rating Maintenance Program (RAMP) requirements. Subsequently, the evaluation of
Trusted XENIX, version 3.0, completed and the product was placed on the EPL in April of 1992.

In October 1992, the B2 and higher RAMP requirements were completed and TIS was one of the first high
assurance vendors to participate. Given the nature of the proposed vendor changes, however, NSA assigned
a team to work in conjunction with the vendor to ensure that all relevant assurances were maintained and
that the TCSEC B2 requirements were met in light of all modifications.

This report documents the results of the first TIS RAMP action for Trusted XENIX, which applies to the
system as available from TIS in June 1993.

Material for this report was gathered by the combined TIS and NSA Trusted XENIX evaluation team from
evaluation evidence for Trusted XENIX versions 2.0 and 3.0, through documentation, interaction with system
developers, testing, and examination of the system source code.

1.1 Evaluation Process Overview

The Department of Defense Computer Security Center was established in January 1981 to encourage the
widespread availability of trusted computer systems for use by facilities processing classified or other sensitive
information. In August 1985 the name of the organization was changed to the National Computer Security
Center. In order to assist in assessing the degree of trust one could place in a given computer system, the
DoD TCSEC was written. The TCSEC establishes specific requirements that a computer system must meet
in order to achieve a predefined level of trustworthiness. The TCSEC levels are arranged hierarchically into
four major divisions of protection, each with certain security-relevant characteristics. These divisions are
in turn subdivided into classes. To determine the division and class at which all requirements are met by
a system, the system must be evaluated against the TCSEC by an NSA, Trusted Product and Network
Security evaluation team.
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The NSA supports the creation of secure computer products in varying stages of development from initial
design to those that are commercially available. Preliminary to an evaluation, products must go through
the Proposal Review Phase. This phase includes an assessment of the vendor’s capability to create a secure
system and complete the evaluation process. To support this assessment, a Preliminary Technical Review
(PTR) of the system is done by the NSA. This consists of a quick review of the current state of the system
by a small, but expert, team and the creation of a short report on the state of the system. If a vendor passes
the Proposal Review Phase they will enter a support phase preliminary to evaluation. This support phase
has two steps, the Vendor Assistance Phase (VAP) and the Design Analysis Phase (DAP). During VAP, the
newly assigned team reviews design specifications and answers technical questions that the vendor may have
about the ability of the design to meet the requirements. A product will stay in VAP until the vendor’s
design, design documentation, and other required evidence for the target TCSEC class are complete and the
vendor is well into implementation. At that time, the support moves into DAP.

The primary thrust of DAP is an in-depth examination of a manufacturer’s design for either a new trusted
product or for security enhancements to an existing product. DAP is based on design documentation and
information supplied by the industry source, it involves little “hands on” use of the system, but during this
phase the vendor should virtually complete implementation of the product. DAP results in the production
of an Initial Product Assessment Report (IPAR) by the NSA assessment team. The TIPAR documents the
team’s understanding of the system based on the information presented by the vendor. Because the IPAR
contains proprietary information and represents only a preliminary analysis by the NSA, distribution is
restricted to the vendor and the NSA.

Products that have completed the support phase with the successful creation of the IPAR, enter formal
evaluation. Products entering formal evaluation must be complete security systems. In addition, the release
being evaluated must not undergo any additional development. The formal evaluation is an analysis of the
hardware and software components of a system, all system documentation, and a mapping of the security
features and assurances to the TCSEC. The analysis performed during the formal evaluation requires “hands
on” testing (i.e., functional testing and, if applicable, penetration testing). The formal evaluation results in
the production of a final report and an Evaluated Products List entry. The final report is a summary of
the evaluation and includes the EPL rating which indicates the final class at which the product satisfies all
TCSEC requirements in terms of both features and assurances. The final report and EPL entry are made
public.

After completion of the Formal evaluation phase, products rated at Bl and below enter the rating mainte-
nance phase (RAMP). The rating maintenance phase provides a mechanism to entend the previous rating
to a new version of an evaluated computer system product. As enhancements are made to the computer
product the ratings maintenance phase ensures that the level of trust is not degraded.

Rating Maintenance is accomplished by using qualified vendor personnel to manage the change process of the
rated product during the maintenance cycle. These qualified vendor personnel must have strong technical
knowledge of computer security and of their computer product. These trained personnel will oversee the
vendor’s computer product modification process. They will demonstrate to the Trusted Product and Network
Security Evaluation Division that any modification or enhancements applied to the product preserve the
security mechanisms and maintain the assurances required by the TCSEC for the rating previously awarded
to the evaluated product.
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1.2 Conventions

Throughout this report, filenames, command names, and system calls will be in italics. User and group
names will be in slanted text. C language structures, their fields (including the term “u_area”), disk drive
designators, and port designators will be in typewriter style. Intel 80286 or 80386 instructions and registers
will be in TYPEWRITER CAPITALS. Signals and privileges will be in CAPITALS.

1.3 Document Organization

This report consists of four major sections, four appendices, and a bibliography. Section 1 is this introduction.
Section 2 provides an overview of the system hardware and software architecture. Section 3 provides a
mapping between the requirements specified in the TCSEC and the Trusted XENIX features and assurances
that fulfill those requirements. Section 4 presents the evaluation team’s comments on the system. The first
two appendices identify specific hardware and software components to which the evaluation applies. The
third appendix contains a list of acronyms used throughout the report, while the final appendix contains the
Evaluated Products List entry for Trusted XENIX.
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Chapter 2

System Overview

This section begins with a brief description of the hardware used in the system, followed by a short discus-
sion of the history of the software. The remainder of the section describes in detail the security-relevant
architecture and mechanisms used in Trusted XENIX.

2.1 Hardware Background

The evaluated system consists of the Trusted XENIX version 4.0 operating system running on an

International Business Machines (IBM) Personal Computer AT (IBM PC/AT),
IBM Personal System/2 (PS/2),!

AST 386/25,2

AST Premium 386/33 (AST 386/33),2

GRiDCASE 1537,2

GRiD 386sx-MFP,?

HP Vectra 386,2

NCR PC386sx,?

NEC PowerMate 386/25,2

NEC BusinessMate 386/25,2

TREND Telecommunications Limited Model 635 PC (TREND 635 PC),?
Unisys Personal Workstation 2 Series 800/20C (Unisys 820 COP),?
WANG 382T,?

WANG 382,2

or Zenith Z-386/33 Workstation.?

These base systems are available in several configurations, each of which contains a fixed disk® as well as
a diskette drive. Memory from 512 kilobytes (KBs) to 16 megabytes (MBs) in size may be used with the
system. The user has several choices of CRT display, keyboards, as well as several printers. The Intel 80287
or 80387 Numeric Processor Extension is also available for use, if desired. As many as five ASCII terminals
can be connected to a workstation?, allowing a user to log in to Trusted XENIX from either the workstation
keyboard, or from a connected terminal. Thus, as many as six separate users can make (interactive) use of
the system at one time.

The Intel 80286 and 80386 central processing units (CPU) offer larger address spaces and improved per-
formance with regard to the processors used in the earlier IBM PCs. More significantly, they incorporate

1Models 50, 60, 70, 70T, 70P, or 80.

2These hardware platforms will be refered to collectively as “PC/AT Clones” in the remainder of this report.
3The GRIDCASE 1537 has a removable cartridge drive rather than a fixed disk.

*Note that only the PS/2 models allow the connection of more than two ASCII terminals.
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features which support protected mode operation: hierarchical privilege levels (rings), privileged instructions,
and memory segmentation and mapping, making it a usable hardware base for a trusted operating system.

2.2 Software Background

Trusted XENIX is a multi-user, multi-tasking operating system for microcomputers, based on the popular
UNIX operating system.

UNIX was created by Ken Thompson and Dennis Ritchie at Bell Laboratories in 1969 to run on a PDP-7
computer. Since that time, UNIX has gone through many versions and updates, in the process becoming
one of the most popular development environments in existence.

When PCs were first introduced, the most powerful operated with 8-bit CPUs, and were capable of supporting
only simple operating systems. When 16-bit CPUs were introduced, more complex operating systems were
possible, but such PCs would be heavily loaded when trying to run a full UNIX-like system. With the advent
of 32-bit CPUs, the power of PCs was able to accommodate a multi-tasking system such as UNIX. Since the
name “UNIX” is licensed by AT&T, PC UNIX derivatives are named differently, but generally retain the
“IX” suffix to identify the product as a UNIX derivative; hence “XENIX”.

Microsoft Corp. introduced the first version of XENIX in August of 1980, based on version 7 of AT&T UNIX.
When System III UNIX was introduced, Microsoft updated XENIX to incorporate the changes. The version
on which Trusted XENIX is built is based on the Microsoft XENIX version which incorporates AT&T UNIX
System V Release 2.0 features. The specific release of that XENIX was 2.0.

In June 1989, TIS acquired Secure XENIX from IBM, renamed it Trusted XENIX, and continued its de-
velopment as a Class B2 system. Like its predecessor, Trusted XENIX is binary compatible with IBM
PC XENIX for well-behaved applications and with most of the functions defined in the System V Interface
Definition [SVID].

2.3 Operating Environment Background

Trusted XENIX is an IBM PC/AT, IBM PS/2, or PC/AT Clone product designed to provide a trusted
workstation capability. When used as a trusted workstation, this system requires an operating discipline or
work environment that is a hybrid of the traditional central site, time-sharing environment and the emerging
personal workstation environment.

2.3.1 Physical Environment

Trusted XENIX is designed to operate in an independent, stand-alone mode, meaning one must view a
trusted workstation as an independent element of an installation’s entire computing facility. By moving the
computing components into the user’s work space, the TCB is moved into the user’s work space. While
this method of distributing the computing resources may be useful, it does not reduce the need to provide
physical protection for the TCB. As the System Administration Manual [SYAD] points out, “some care must
be exercised in the physical planning regarding workstation placement.” The System Administration Manual

FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
2.3. OPERATING ENVIRONMENT BACKGROUND

goes on to state that the following rules must be followed when planning workstation placement:

“Worthy of particular note is the prevention of physical modification to the system unit. Unlike
traditional centralized computer systems where users are physically separated from the majority
of system hardware, the operational environment typical for a workstation requires users to be
physically co-located with most, if not all, system hardware components. Therefore, it is necessary
for the site to provide adequate physical controls to ensure that the system hardware may only
be modified by appropriate administrative personnel who are cleared for all data located on the
system.”

2.3.2 Personnel Requirements

Trusted XENIX depends on a number of “administrative users” to install, maintain, and operate the system
properly. Five important roles must be fulfilled by these administrative users. These five roles are defined in
the System Administration Manual as Trusted System Programmer (TSP), System Security Administrator
(SSA), Auditor, Secure Operator (SO), and Accounts Administrator (AA). The System Administration
Manual expects that no one individual would fill all five roles, and it expects that the normal workstation
user would not fill any of these roles.

e Trusted System Programmer (TSP)
The TSP 1s responsible for initial system installation to include set-up and installation of the hardware,
installation of the operating system, and initializing all of the site-dependent system databases (e.g.,
peripheral configuration, administrative users accounts, physical security environment). In addition,
the TSP is responsible for most system maintenance activities and is the only person that is permitted
to operate the system in maintenance mode. The TSP role does not exist in multi-user mode.

e System Security Administrator (SSA)
The SSA is responsible for the security relevant activities required for day-to-day operations. These
activities include updating configuration information (e.g., peripheral security characteristics), verifying
consistency of important TCB databases (through use of the scheck command), maintaining user
authentication data and limits as well as adding and deleting users, and adjusting system security
parameters (e.g., maximum log in time). SSAs are distinguished from other users by being members
of the ssa group.

e Auditor
The Auditor is responsible for maintaining and reviewing the system audit log. The Auditor’s duties
include turning system auditing on and off, identifying which events are to be audited, adjusting system
audit thresholds, ensuring that there is sufficient space for the audit log, and producing and reviewing
audit reports. Auditors are distinguished from other users by being members of the audit group.

e Secure Operator (SO)
The SO is responsible for the daily tasks which require more privilege than is allotted ordinary users.
On mainframe systems these tasks would be performed by an independent operations staff. The SO’s
duties include managing shared devices and the queues, if any, associated with them, and file system
backup and restore. SOs are distinguished from other users by being members of the so group. No
other operator capability is required or provided.

e Accounts Administrator (AA)
The AA is responsible for managing the system accounting function. The AA’s duties include turning
on and off accounting of various types of activities and producing the required accounting reports. AAs
are distinguished from other users by being members of the aa group.
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Trusted XENIX does not use the user id (uid) attribute of a process to distinguish it as acting on behalf of
an administrative user. All special uids that are required by the system are not valid uids for use during log
in. This restriction is enforced by setting the passwords for these uids to invalid values and preventing these
passwords from being changed.

2.4 Trusted XENIX TCB Definition

The TIS Trusted XENIX Trusted Computing Base (TCB) consists of five main components:

Hardware the Intel 80286 or 80386 CPU, memory, controllers, and peripherals of
the IBM PC/AT, IBM PS/2, or PC/AT Clone system,

Firmware the permanent code in the ROM BIOS, keyboard microcontroller, and
peripheral controllers of the IBM PC/AT, IBM PS/2, or PC/AT Clone
system,

Kernel software the Trusted XENIX software that runs with privilege level zero (ring zero)

of the Intel 80286 or 80386 CPU

Trusted Processes the Trusted XENIX software that runs with privilege level three (ring
three) as independent processes with software-defined privileges,

Administrative files/databases the data structures which define users, security levels, auditing, and re-
lated information necessary to define the secure state of the Trusted
XENIX system.

The following sections cover in detail both the hardware and software components of the TCB. Firmware
is discussed in the hardware section, while administrative files and databases are covered in the software
section.

2.5 Trusted XENIX Hardware

This section describes the important characteristics of all system hardware, firmware and diagnostics, and
is broken down into seven subsections. First, the IBM PC/AT Architecture is presented, followed by the
IBM PC/AT Clone architectures, and finally the IBM PS/2 Architecture. The third and fourth subsections
discuss the Intel 80286 and 80386 Microprocessors. Finally, Input/Output (I/O) Devices, System Board
Firmware, and Physical Protection are discussed.

2.5.1 IBM PC/AT Hardware Configuration

Trusted XENIX operates on a standard IBM PC/AT, with no hardware modifications. The IBM PC/AT
models included are: 5170 Model 099, 5170 Model 239, and 5170 Model 339.

All three models include a system unit, keyboard, diskette drive and a fixed drive. All three models also
include the following items on the system (“mother”) board:
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Intel 80286 operating at 8 MHz clock speed (the Model 099 operates at 6 MHz)

64 KB Read-only Memory (ROM)

512 KB of dynamic Random Access Memory (RAM)

System Clock/Calendar

Complementary Metal Oxide Semiconductor (CMOS) RAM containing system configuration switches
Battery back-up for CMOS RAM and Clock/Calendar

Socket for Intel 80287 Numeric Processor Extension

Seven Direct Memory Access (DMA) channels

Sixteen level interrupt handler

Eight I/O expansion slots

The I/0O expansion slots are designed to support devices (i.e., I/O boards) with either 8- or 16-bit data
paths; the 8-bit data paths are included to support PC and PC/XT compatible boards. All disk and tape
drive controllers are connected to I/O expansion slots supporting 16-bit data paths, while the serial/parallel
device adapters are connected to slots supporting only an 8-bit data path. This bus architecture is now
referred to as “Industry Standard Architecture,” or ISA.

2.5.2 PC/AT Clone Hardware Configurations

Trusted XENIX also operates on an AST 386/25, AST 386/33, GRIDCASE 1537, GRiD 386sx-MFP, HP
Vectra 386, NCR PC386sx, NEC PowerMate 386/25, NEC BusinessMate 386/25, Trend 635 PC, Unisys 820
COP, WANG 382T, WANG 382, or Zenith Z-386/33 (i.e., the PC/AT Clones).

Each of the PC/AT Clones is based either on an Intel 80286 or 80386 operating at speeds between 16 and
33 Mhz. Each PC/AT Clone is built around a standard ISA bus, including a system board with components
very similar to those found on an IBM PC/AT,’ at least one diskette drive, at least one fixed disk drive®,
keyboard, and monitor. Most of the clones, with the exception of the GRIDCASE 1537, GRiD 386sx-
MFP, NCR PC386sx, and Trend 635 PC include a built-in memory cache. Each of these caches works on
absolute addresses provided by the CPU, mapping multiple addresses to a single location in the cache. The
implementation of each cache ensures that only valid cache data can be read and modified cache data is
written to memory prior to being overwritten.

AST 386/25 and 386/33

The AST 386/25 is a desktop machine utilizing an Intel 80386 at 25Mhz.
The AST 386/33 is a similar machine, except that it operates at 33Mhz.
GRiDCASE 1537

The GRiDCASE 1537 is a portable laptop machine, with a built-in keyboard and electroluminescent light-
emitting flat-panel display, utilizing an Intel 80286 at 16Mhz.

5 A more precise list of components can be found in “Evaluated Hardware Components”, page 117.

6The GRIDCASE 1537, Trend 635 PC, WANG 382, and WANG 382T have a removable cartridge drive rather than, or
in addition to, a “fixed” disk drive. However, for consistency, the generic term “fixed disk drive” will include the removable
cartridge drive.
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GRiD 386sx-MFP

The GRiD 386sx-MFP is a desktop machine utilizing an Intel 80386 at 16Mhz.

HP Vectra 386

The HP Vectra 386 is a desktop machine utilizing an Intel 80386 at 25Mhz.

NCR PC386sx

The NCR PC386sx is a desktop machine utilizing an Intel 80386 at 16Mhz.

NEC PowerMate 382/25 and BusinessMate386/25

The PowerMate 1s a desktop workstation and the BusinessMate is a desk-side workstation, both machines
utilize an Intel 80386 at 25Mhz.

Trend 635 PC

The Trend 635 PC is a desktop machine utilizing an Intel 80386 at 20Mhz. This machine has also been
TEMPEST certified.

Unisys 820 COP

The 820 COP is a desktop workstation utilizing an Intel 80386 at 20Mhz.

WANG 382 and WANG 382T

The WANG 382 and 382T are desktop machines, each utilizing an Intel 80386 at 16Mhz. The WANG 382T
has also been TEMPEST certified.

Zenith Z-386/33

The Zenith 7-386/33 is a desktop workstation utilizing an Intel 80386 at 33Mhz.

Direct Memory Access

The DMA controller (on all evaluated machines) allows I/O devices to transfer data directly to and from
memory, freeing the system microprocessor of 1/0 tasks. The system microprocessor provides the memory
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address and I/O address for the transfer as well as a transfer count. In this manner, the system microprocessor
can control the ability of a process to transfer data into and out of another process’ domain (i.e., memory
locations outside the process’” address space).

Interrupt Controller

The IBM PC/AT and PC/AT Clones provide hardware support for the 80286 and 80386 microprocessors’
non-maskable interrupt (NMI) and two Intel 8259A Controller chips provide 16 levels of system hardware
interrupts.

The 16 interrupt levels may also be “shared” by multiple devices, so long as each interrupt handler adheres to
the appropriate shared interrupt logic. When a handler gains control as a result of an interrupt, it determines
whether its device was the device that actually caused the interrupt. If so, it handles the interrupt. If not,
the handler passes control to the next interrupt handler in the chain.

I/0 Channel

The I/O Channel supports the DMA and Interrupt capabilities, as well as external adapter cards. The I/O
Channel is essentially a bus which permits the access of memory and I/O devices within the system. The
I/O Channel includes address lines, data lines, system clock, interrupt, and other control signals.

2.5.3 IBM PS/2 Hardware Configuration

Trusted XENIX also operates on a standard IBM PS/2 with no hardware modifications. The IBM PS/2
models included are: 50, 60, 70, 70P, 70T, and 80.

All six models include a system unit, keyboard, diskette drive and a fixed drive. IBM PS/2 models 50 and
60 include the following items on the mother board:

Intel 80286 operating at 10 MHz clock speed

128 KB ROM

1 MB of dynamic RAM, with parity, one bit per byte
System Clock/Calendar

CMOS RAM containing system configuration switches
Battery back-up for CMOS RAM and Clock/Calendar
Socket for Intel 80287 Numeric Processor Extension
Eight DMA channels

Parallel Port

16-bit channel

ETA RS-232-C serial communications controller and port
Sixteen level interrupt handler

Four Micro Channel connectors

Integrated video graphics subsystem

The IBM PS/2 model 60 includes an extra 2 KB RAM extension with battery backup and an extra four
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Micro Channel connectors (for a total of eight).

The IBM PS/2 model 70 includes all of the above with the following differences:

The CPU is and Intel 80386 operating at 16, 20, or 25 Mhz (rather than an Intel 80286)
More dynamic and CMOS RAM (up to 8 MB and 2 MB respectively) is available
32-bit channels are supported, in addition to the 16-bit channels

There are eight, rather than four, Micro Channel connectors

There is an 80387 Numeric Processor Extension socket

The IBM PS/2 model 70T is a TEMPESTed version of the model 70. The model 70P is a portable version
of the model 70, with a plasma display. The 70P has a single available clock speed of 20 MHz.

The IBM PS/2 model 80 falls somewhere between the Model 50 and 60 PS/2s and the Model 70. The
following list describes the differences between the Models 70 and 80:

e The CPU is and Intel 80386 operating at 16 and 20 Mhz
e The dynamic RAM space (up to 2 MB) is less than a Model 70 but more than the others

The DMA, Interrupt Controller, and I/O Channel features discussed previously are also applicable to the
IBM PS/2 machines.

Micro Channel Architecture

The PS/2 Architecture is built upon IBM’s Micro Channel architecture which consists of an address bus,
data bus, transfer control bus, arbitration bus, and support signals. This is distinct from, and not compatible
with, the ISA bus of the IBM PC/AT. Micro Channel uses synchronous and asynchronous communication to
permit control and data transfers between memory, I/O devices, and the controlling master. The controlling
master can be a DMA controller, system microprocessor, or a bus master.

The Micro Channel architecture allows for bus ownership to be controlled by a central arbitration point,
which acknowledges up to 16 devices. The central arbiter gives devices the ability to share and control the
system. It allows burst data transfers and prioritization of control between devices. The devices can be
DMA slaves, bus masters, or the system microprocessor.

Arbitrating devices request use of the system channel. The central arbiter initiates an arbitration cycle when
the present device releases the channel. The requesting devices then drive their assigned 4-bit arbitration
level onto the arbitration bus. When a device sees a more significant request on the arbitration bus, it stops
driving the bus. The device with the most significant request thereby wins control of the channel when the
arbiter goes to the grant state. A device may transfer multiple times, unless another device requests use of
the channel, in which case further transfers are postponed until the device wins the channel again.

This design permits the central arbiter to indicate when the channel is available for requests and to allow
preemption when needed. The design also requires each device to be aware of and adhere to the logic used by
the arbitration bus. The arbitration level used by a device can be assigned by diagnostic or system programs.
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Programmable Option Select

The Programmable Option Select eliminates the need for switches on the system board and adapters by
replacing their function with programmable registers. System configuration utilities create configuration
data for the system board and each adapter. This is achieved by reading a unique adapter ID number from
each adapter, matching it with an adapter description file, and configuring the system accordingly. The
resulting data and adapter IDs are stored in battery-backed RAM.

These data permit the power-on self-test (POST) to configure the system whenever the system is powered on.
The POST first verifies that the system has not changed by reading the adapter ID numbers and comparing
them with the previously stored values. If the configuration has changed, the system configuration utilities
must be rerun.

Configuration utility programs are provided with the IBM PS/2 on the Reference Diskette. Since these
utilities allow the hardware-recognized configuration to be altered, the Trusted Systems Programmer (TSP)
must restrict the use of this diskette to authorized users (see section 2.5.8).

2.5.4 Intel 80286 Characteristics

The 80286 has a 24-bit address path, and a 16-bit data path, both externally and internally. The 80286
operates in one of two addressing modes: Real Address Mode and Protected Virtual Address Mode. Trusted
XENIX uses the Real Address Mode only during the initialization process; otherwise, it operates exclusively
in the latter (“protected”) mode until it is shut down. The description of the processor’s operation which
follows assumes operation in protected mode.

Security features which have been incorporated into the 80286 in protected mode include the provision of
hierarchical privilege levels, the mediation of all memory accesses through a central mechanism, and other
features oriented toward providing process separation. Intel incorporated security features into its design, and
conducted design analyses to determine the performance of the planned security environment, as described

in [BAUE].

Segment Access Control

All memory references, regardless of the processor privilege level, are made through a single, common mech-
anism. This mechanism provides an executing process access to up to four active memory segments, using
segment selector registers:

CS — Code segment selector
DS — Data segment selector
SS — Stack segment selector
ES — Extra segment selector

A segment is from 1 byte to 64 KB in length, and is the fundamental unit of storage of the processor. An
instruction may use a displacement or offset to point to a particular byte or word within the segment, or
it may use an additional register to modify the effective address. In either case, the address is interpreted
as being within the segment determined by the selector. All of a process’ references to memory use these
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selectors, either explicitly or implicitly. The selectors thus provide a virtual address for the segment; its
actual address is provided through the use of descriptors, which contain the starting address and length of
the segment, as well as hardware access control information (the “access rights”).”

The process’ virtual memory is composed of segments, which are addressed through the segment selectors.
In order to simplify the management of multiple processes which share some common operating system code,
this virtual memory is divided into two classes: one for private code and data, and the other for code and
data shared with other processes. The segment descriptors for these two classes are maintained in different
tables: a Global Descriptor Table (GDT) for shared code and data, and a Local Descriptor Table (LDT) for
private code and data. All processes share a single GDT, but each has its own LDT. These tables contain
descriptors for all segments which the process is allowed access. The segment selector value (the virtual
address) implicitly chooses which of these two tables will be used; the protection operation of the system is
independent of whether a descriptor is in the LDT or the GDT.

All LDTs must be maintained as segments within the GDT. The GDT is implicitly also a segment in the
GDT, but there is no descriptor for it; it is pointed to directly by a dedicated GDT Register (GDTR). Besides
segment descriptors, the tables also contain special-purpose control descriptors which are used for procedure
calls, task switching, and interrupt handling. The four types of descriptors used are data, executable (code),
system segment, and gate segment descriptors.

Trusted XENIX uses two of the four privilege levels defined for the 80286; they are numbered from zero
to three in decreasing order of privilege, one and two being the unused privilege levels. Privilege levels are
associated with all descriptors and selectors and thus are associated with segments, processes and gates.
Selectors are 16 bits in length: 1 bit is used to select the GDT or LDT; 13 bits are used to name (or
address) the virtual segment; and the remaining 2 bits contain the requested privilege level (RPL), whose
interpretation depends on the selector type. When a process executes, the RPL® of its CS determines the
current privilege level (CPL)? of the process. The RPL of the CS and the SS must be equal. When the
process executes an instruction to load one of the segment selectors, checks are made using the CPL and the
access rights field within the selected descriptor, to ensure that the operation is permitted by the protection
rules. Initial checking ensures that the descriptor exists and is well-formed, and that the segment it points
to is present. The remaining checks use the access rights field of the descriptor, the CPL, and are dependent
on which segment selector is chosen.

The access rights field of a segment descriptor includes the descriptor privilege level (DPL), and control

information to distinguish the following cases:

o data segment: read-only or read/write
e code (executable) segment: execute-only or execute/read

In addition, a code segment can be designated as a conforming code segment'? in which case a different check
is made. Trusted XENIX makes no use of conforming code segments. A data segment can be described in

"To avoid the performance penalty of multiple memory references per request, the selector registers are extended to include
the segment’s actual address, length, and access rights. This extension acts as a translation look-aside buffer, which the
processor uses in all memory references with that selector. The extension information is obtained from main memory the first
time a reference is made after a segment selector has been loaded with a new value. The extension is not directly addressable
by processes, regardless of the process’ privilege level.

8The RPL of a code segment is not directly modifiable to the resulting process.

9In keeping with Intel’s nomenclature, the term CPL is used throughout this section to mean “Current Privilege Level”,
rather than “Current Process Level”, as used in the other parts of this report.

10Please refer to [286 85] or [386 86] for a more complete description.
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terms of its length measured down from its highest address (64 KB), instead of its maximum length measured
up from its lowest address, which is useful for stack segments; this does not have any additional protection
implications and will be ignored here. Access rights checks that are made are as expected; for instance, only
the descriptors of code segments can be loaded into the CS, and only those of writable data segments into
the SS, while descriptors for data segments, as well as those for any code segments with the read access
right, can be loaded into the DS and ES. Privilege level checks are also straight-forward: for CS and SS,
DPL must equal CPL; while for DS and ES, DPL > CPL. This means that control can be transferred by
CALL and JMP instructions only within the same privilege level, and only data at the same or a less privileged
level (higher-valued DPL) can be read or written. After these checks have been made, the segment selector
is loaded; on the next memory reference which uses the selector, the processor loads the associated cache
(translation look-aside buffer) register with the descriptor, thereby speeding up future memory references.

Once the segment selector has been loaded, the protection checks to determine whether access is permitted
have been accomplished. However, further checks are necessary when a process references a memory location
during subsequent process execution. These checks are that the displacement generated by the execution of
an instruction is within the length limit of the segment, and that no attempt is made to write into a read-only
segment. Any violation causes an interrupt before any memory reference is started and before any registers
are modified, leaving the process state intact for restarting the instruction, say, if the segment length is
subsequently increased. The limitation that code which is marked execute-only cannot be accessed using DS
or ES, extends to prefixing (the substitution of a segment selector for the normal one in an instruction), so
such code cannot be read using the CS override prefix on a data movement instruction.

An additional level of protection is provided for pointer validation using the RPL. This facility is provided for
use by more privileged procedures which need to validate that the pointers passed to them by less privileged
callers are confined to the privilege level of the caller. To use this facility, the procedure sets the RPL of its
DS or ES selector to the privilege level of its caller (or whatever level it chooses.) The access checks then
made for DS or ES selectors will use the greater of RPL and CPL in the comparison with the DPL; thus
access can be made more restrictive, at the process’ choosing, than would otherwise occur, so that the caller’s
attributes, rather than those of the more privileged procedure, are used in making access checks. Additional
aids are provided to procedures in the form of instructions that set the RPL directly from a given selector
value (for example, the caller’s CS), and for verifying the access capabilities of a pointer prior to using it.

Hardware Address Space Structure

Figure 2.1 shows an overview of the hardware’s internal view of memory. The 80286 and 80386 have a
number of registers that point to memory resident structures used in defining a process’ address space (e.g.,
TSS, IDT, GDT, LDT), as shown. Of these, the TSS and LDT are process specific, and the others are
common to all processes. Whenever a context switch occurs, either the contents of the structure must be
changed (i.e., TSS) or the pointer to the structure must be modified to point to the new structure (i.e.,
LDT). A process does not access the TSS, IDT, LDT, or GDT directly, but rather uses them indirectly for
determining physical addresses of virtual segments, among other things (e.g., defining which privilege level
a segment is protected by).

A process’ address space is defined as being a number of segments (up to four at any given time) which the
process can access. These segments are defined indirectly through the selector registers: CS (code segment
selector), DS (data segment selector), SS (extra segment selector), and ES (extra segment selector). These
selectors are treated specially by different instructions (e.g., all instructions are fetched via the CS, while
all push and pop operations use the SS). Each of these selectors indicates whether the LDT or GDT is
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to be used, and includes an index into that table that will result in a descriptor for the desired segment.
The descriptor includes a physical pointer to the segment, and the size of that segment. Hence, the entire
possible address space of a process is defined by the segments defined by the descriptors in the GDT and
the LDT, and the instantaneous address space of a process is defined by the descriptors referred to by the
four selectors.

Control Transfers

Control transfers within a segment (so-called “short jumps”), and between segments at the same privilege
level (“long jumps”), use the facilities of the segment selector described above. Control transfers between
segments at different privilege levels are treated specially, as are control transfers involving task switching.
Only calls and returns (and interrupts) are permitted across privilege level boundaries. To effect these, a
special descriptor type, called a gate, is provided. Control transfer instructions call the gate rather than
attempting to transfer directly to the code segment; such direct transfers of control are prevented by the
processor. Gates are of four types: call, task, interrupt and trap gates. All four gates define a new address
to which control is transferred when they are invoked; this address is not normally directly accessible to the
calling program. That is, an attempt to load a gate descriptor directly into a segment selector generates a
protection fault. Gate transfers use the mechanism of the task and the task state segment (TSS). Of the
four types of gates available, Trusted XENIX uses a single call gate for all direct kernel calls and a number
of interrupt and trap gates to service interrupts and traps.

Tasks and Task Gates

The 80286 knows of a task as a single thread of execution. When a task is defined (initiated), a TSS is
created which defines the save area for the task, and also defines the stacks to be used for task switching at
privilege levels zero, one and two.'! The current TSS is referenced in the special task register (TR). The
TSS has a special descriptor containing its base address and limit, and its DPL. (A task gate is a descriptor
which points to a TSS; it provides an additional level of indirection, and can be used, for example, to provide
access selectively to TSSs which are otherwise hidden in the GDT.) Access to a TSS is controlled so that
its static portions (those containing the stack pointers for each privilege level, and the LDT) never change
during task switching; its dynamic portion contains space for all the program-visible registers and flags, and
task switching automatically saves and restores all these registers. There is only a single TSS, and it is not
used after system start-up.

Call Gates

When a call gate is used to make an inward transfer of control (moving to a more privileged level), access
to the gate is checked using the same rules of privilege as for a data segment, namely that the CPL > DPL.
The gate descriptor, which contains the selector and offset of the destination, is then used to obtain the
destination descriptor. If the call is an inter-segment call, CPL must equal DPL, as noted earlier. If the
destination code segment is at the same privilege level as CPL, the CS and instruction pointer (IP) registers
are loaded from the destination descriptor; note that the calling instruction’s offset is ignored, and the entry
point specified in the gate descriptor is used instead. If the destination code segment is at a different privilege

11 Since privilege levels one and two are not used, only the ring-zero stack is used.
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level than CPL, then DPL must not exceed CPL (outward calls are not allowed.) Otherwise, the new CPL is
taken from the destination descriptor. In either case, the CS and IP registers are loaded from the destination
descriptor to complete the control transfer.

To maintain system integrity, each privilege level has a separate stack. When the call gate is used to change
privilege level, a new stack 1s selected as determined by the new CPL from the TSS, which has stack pointer
information for each of the privilege levels zero through two; there can be no inward call into a destination
with DPL equal to three because that is the lowest possible privilege level, so there can have been no less
privileged caller. Because a new stack is used, provisions are made to pass parameters from the less privileged
stack to the new one; the call gate descriptor includes a count of the number of words that are to be copied
from the former (less privileged) stack to the new one. No automatic validation of the caller’s access to the
words copied onto the stack is done, but instructions are available for the called routine to facilitate the
making of such checks. In Trusted XENIX’s case, a kernel subroutine performs the necessary access checks
whenever invoked.

Interrupt and Trap Gates

Interrupts and traps (exceptions) are special cases of control transfer within a program. Interrupts can be
internal (generated by instructions), or external (generated by hardware signals), whereas traps arise when
an instruction cannot be completed normally.

The programs used to service an interrupt may execute in the interrupted task’s context, or may involve a
task switch. The 80286 provides facilities to specify up to 256 different interrupt codes, of which several are
specified by Intel, and the remainder may be determined by the system designer. A gate is associated with
each interrupt code, and the descriptors for these gates are held in the variable-length interrupt descriptor
table (IDT), which is always pointed to by a special register. The gates in the IDT may be interrupt, trap,
or task gates; interrupt and trap gates process interrupts in the same task, while task gates cause a task
switch. Interrupt and trap gates are similar to call gates: their access rights field contains only the DPL, and
they contain code selectors and offsets for the interrupt routine. The only difference between an interrupt
and a trap gate is that, when an interrupt gate is executed, the interrupt-enable flag is turned off, whereas
when a trap gate is executed, it is not. Like the call gate, the DPL of the interrupt routine code segment
must be numerically no greater than (must not be less privileged than) the interrupted code segment’s CPL.

If a task gate is used as the descriptor associated with an interrupt in the IDT, during servicing of the interrupt
task switching occurs as described earlier. When the interrupt routine has completed, task switching occurs
again with return to the interrupted task. Complete context, including all registers (which includes the
CPL), is saved when the interrupt occurs and is restored when the routine exits.

2.5.5 Intel 80386 Characteristics

The Intel 80386 provides a superset of the capabilities that are found in the 80286.12 The address and data
paths of the 80386 are both a full 32-bits. The descriptors for data segments, executable segments, local
descriptor tables, and task gates are common to both the 80286 and 80386. However, the 80386 has new
versions, in addition to the old ones, of the descriptors for the TSS, call gate, interrupt gate, and trap gate
which support the 32-bit nature of the 80386. These new descriptor types are not used in Trusted XENIX.

12LLOADALL is not supported in the 80386.

18
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
2.5. TRUSTED XENIX HARDWARE

The 80386 also provides additional registers not found in the 80286, the FS and GS segment registers. New
instructions that explicitly operate on the FS and GS registers are available. The addition of FS and GS
segment registers must be considered within the Trusted XENIX. When running on the 80386, Trusted
XENIX takes explicit action to ensure that these registers are cleared on task switches.

The 80386 also supports the execution of one or more Intel 8086 programs in an 80386 protected-mode
environment, called a Virtual-8086 task.!®> However, Trusted XENIX does not provide the capability to
enter this mode.

2.5.6 I/0 Devices
Disks

Each hardware base in Trusted XENIX supports one or more fixed disk drives (either ST506, ESDI, or SCSI
depending on the hardware base), starting at 20 MB in capacity, and one or more diskette drives, with either
1.2 MB or 1.44 MB storage capacity depending on whether a dual-sided 5.25 or 3.5 inch diskette is available.

Cartridge Tape Unit

A cartridge tape unit is available to enable both administrators and users to back up large amounts of data
quickly. The unit uses one-quarter-inch cartridges and depending on the model of drive, can store 125 MB
or 150 MB of data per tape. This unit is accessed identically to the floppy diskette drive. Adaptors are
available for the IBM PC/AT IBM PC/AT Clones, and IBM PS/2.

Keyboard

The keyboard controller is a single-chip microcomputer that is programmed to support the keyboard serial
interface. The controller receives serial data from the keyboard, checks the parity of the data, translates
scan codes (the codes assigned to each key position on the keyboard), and presents the data to the system as
a byte of data in its output buffer. The controller interrupts the system when data are placed in its output
buffer. The status register contains bits that indicate whether an error was detected while receiving the
data. Data may be sent to the keyboard by writing to the keyboard controller’s input buffer. The keyboard
is required to acknowledge all data transmissions.

The keyboard sends data in a serial format using an 11-bit frame. Data sent are synchronized by a clock
supplied by the keyboard. At the end of a transmission, the keyboard controller disables the interface until
the system accepts the byte. Retransmission of bytes with incorrect parity is handled automatically by the
controller. The controller also detects excessive delay during a transmission, and indicates an error.

Some of the evaluated hardware platforms implement a keyboard locking mechanism that allows the console
to be locked while it continues to function as a type of server (i.e., users can still use the system via terminals
connected to RS-232 ports).

For instance, the Zenith Z-386 provide a password mode that will allow Trusted XENIX to boot completely
while preventing any keys entered at the keyboard from actually getting beyond the keyboard controller.

13 Please refer to [386 86] for a more complete description of the V86 mode.
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The password is stored in a special chip, as opposed to CMOS RAM, that is accessible only by the keyboard
controller. When booting, BIOS instructs the keyboard controller to continually look for a matching password
and carriage return. An advantage of this mechanism is that the machine can perform the entire booting
sequence whether the password has been entered or not, and the machine will not respond until the password
has been entered. Note that this does not preclude RS-232 port activity prior to entering the password.

The HP Vectra 386 provide a similar mechanism, however the password is stored in specific addresses in
CMOS RAM. When the HP password is used in “network mode” the system will begin to boot and then
the system BIOS instructs the keyboard controller to read the password from the CMOS RAM and lock
itself until a matching password is entered. Once the password is entered, the boot sequence is allowed to
continue. In this case, Trusted XENIX does not boot completely until the password is entered.

In addition, the AST 386/25 and 386/33 both provide a password server mode which, when enabled, will
allow the machine to begin the boot procedure. As with the HP Vectra 386, the system BIOS instructs
the keyboard controller to lock itself and to constantly look for the password to be entered. Both models
of the AST store the password in a chip other than CMOS RAM. Once the password is entered, the boot
sequence will continue. The AST machines also provide the capability to lock the keyboard after the system
has booted, with a special key sequence. This sequence is recognized by the keyboard controller’s BIOS. The
machine will continue to operate normally, hence processes will run to completion and connected terminals
can operate freely, but the console keyboard will not forward keystrokes beyond its controller. In order to
unlock the keyboard, the keyboard controller must receive the correct password followed by a carriage return,
at which time it will begin propagating keystrokes normally.

It should be noted that the GRiD 386sx-MFP documentation states that it also provides a keyboard locking
mechanism as part of a special password mode. However, this feature is implemented by the system BIOS
and is therefore not available once Trusted XENIX has booted.

No other evaluated machine implements such a mechanism.

Printers

Trusted XENIX provides filtering of output sent to the printer (see section 2.8.8, page 81). This permits a
number of printers to be included in the evaluated configuration, since page labeling can not be subverted
by software reconfiguration commands contained in user files. Examples of acceptable printers which were
tested are listed in Appendix A. Essentially any printer that simply prints (as opposed to interpreting the
characters as commands of some sort) the hex characters 00 (null), 08 (backspace), 09 (horizontal tab),
0A (new line), 0C (form feed), 0D (carriage return), and 20 through 7E (standard ASCII characters) is

acceptable.

Serial and Parallel Interfaces

The system comes installed with a Serial/Parallel Adapter.!* The serial portion is fully programmable, and
supports asynchronous communications. It will add and remove start, stop and parity bits. A programmable
baud-rate generator allows operation from 50 to 9600 baud. Multiple choices are available for character width
and stop bit selection. The adapter uses a 9-pin port to which a special cable can be attached which converts

14Tn the IBM PS/2, the serial and parallel ports are on separate boards but equivalent to the IBM PC/AT implementations
of the same name.

20
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
2.5. TRUSTED XENIX HARDWARE

the interface to a standard EIA RS-232C port. The serial port is addressed as either communications port 1
or 2, as selected by a jumper located on the system board. The adapter makes all of the accessible registers
of the serial controller available for programmable access.

The parallel portion of the adapter provides an eight-bit parallel interface at standard TTL levels; it uses a
DB-25 connector. The port may be addressed as parallel port 1 or 2, as selected by a jumper located on the
system board. This port is typically used to connect a printer to the system, and uses standard signaling
protocol.

2.5.7 System Board Firmware

The ROM on the system board contains the Basic 1/O System (BIOS), the BASIC interpreter,!® and the
power-on self-test (see section 2.9.1, page 83). The BIOS provides low-level control for the major I/0
devices in the system and is used in Trusted XENIX only as part of the initialization sequence. The BASIC
interpreter is a ROM-based interpreter for the BASIC language; it is not used (nor accessible) at all in
Trusted XENIX.

2.5.8 Physical Protection

Only the Trusted System Programmer (TSP) is intended to have access to the interior of the system unit.
Access to the interior is needed in order to install or repair the system or one of its components, and in the
case of a IBM PC/AT to set the few configuration switches that exist, and, finally, to convert the system
for operation in maintenance mode.

The Trusted Facility Manual describes this threat and offers suggestions with regard to how each machine can
be protected, given their individual physical protection mechanisms. Some of the machanisms implemented
on the various machines are as described in table 2.1. Even when there is not a power-on password, booting
can be protected by physically disabling the A floppy diskette drive.

It is the TSPs responsibility to, with the guidance in the TFM, configure and protect the Trusted Product
in order to meet the TCSEC assumptions that the TCB portions of the hardware base will not be tampered
with.

2.5.9 Hardware Diagnostics

Trusted XENIX provides a number of tools for validation of the correct operation of the TCB hardware.
These tools consist of Power On Start Tests (POST), advanced diagnostics, and hardware protection mech-
anism diagnostics.

The POST resides in the ROM of each evaluated hardware base. Each POST consists of some set of tests
that are executed each time the machine is powered-on. The POSTs contain diagnostics to test some minimal
functionality of the hardware and the identify available peripherals. The tests include routines for testing
the system board, memory and various control units. Additionally, there are tests that verify the correct
checksum for the ROM program itself; tests of the registers and flags of the CPU; and some tests of the

15 The BASIC interpreter is included only with some of the hardware bases (e.g., IBM PC/AT).
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Hardware Base Power-on Password | Cabinet Lock | Keyboard Lock
IBM PC/AT No Yes! Yes!
IBM PS/2 Yes Yes No
AST 386/25 Yes Yes Yes?
AST 386/33 Yes Yes Yes?
GRiDCASE 1537 No No No
GRiD 386sx-MFP Yes No No
HP Vectra 386 Yes No No
NCR PC386sx No Yes No
NEC PowerMate/BusinessMate No YesT YesT
Trend 635 PC Yes No Yes
Unisys 820 COP No Yes Yes
WANG 382/382T No Yes Yes
Zenith Z-386/33 Yes Yes! No

T~ This is a combined cabinet/keyboard lock.
Y _ This lock is electronic rather than physical. As such it relies on physical protection of the TCB.

Table 2.1. Physical Protection Mechanisms

security features of the CPU. A listing of the ROM program, including the POST, is contained in the IBM
PC/AT Technical Reference Manual [TECH].

Advanced Diagnostic Tests are also provided with some of the evaluated hardware bases. These can be
invoked only by the TSP, while the system is in maintenance mode. These programs are menu driven and
provide more detailed tests, specifically for some of the peripheral devices.

TIS provides a set of diagnostic tests with Trusted XENIX. These tests were developed by TIS to test all of
the security mechanisms of the Intel 80286 and 80386 upon which Trusted XENIX depends (e.g., to protect
itself from tampering). As with the Advanced Diagnostic Tests, these tests must be run by the TSP from a
DOS prompt. This set of tests covers the following areas of security:

e Tests to ensure that Protected Mode can be initialized
e Tests to ensure that privileged and trusted instructions cannot be executed from ring 3

Tests to ensure that segments can be accessed only with the proper access mode (e.g., read-only segment
can only be read)

Tests to ensure that segments in more privileged rings cannot be loaded

Tests to ensure that data outside a segment’s bounds cannot be accessed

Tests to ensure that the address validation instructions work properly

Tests to ensure that invalid descriptors (and, therefore, segments) cannot be loaded

Tests to ensure that invalid instructions are handle properly

Tests to ensure that the correct interrupt handlers are called

Tests to ensure that control transfers to different rings are handled properly and that inproper transfers
are not allowed

A supplemental, but necessary (for all non-IBM platforms), set of peripheral tests has also been identified,
Checky/It version 3.0 (produced by Touchstone Software Corporation). This utility provides a very compre-
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hensive set of tests that will validate the correct functionality of the evaluated peripherals. This set of tests
is necessary to fill in for inadequacies or unknowns in the POSTs of the non-IBM hardware platforms.

2.6 Trusted XENIX Software

This section of the report describes the TCB software. After a general introduction to the classes of software
included in the TCB, the kernel software is described, followed by a more detailed description of the file
system and process management. The kernel interface is then described, followed by the trusted processes.

2.6.1 Classes of TCB Software

Trusted XENIX’s Intel 80286 or 80386 CPU provides two addressing modes (see section 2.5.4, page 13) of
operation: real mode and protected mode. While running, Trusted XENIX always uses protected addressing
mode. The processor’s real address mode is never used except in the earliest stages of system initialization
and at the end of system shutdown. Likewise, the standard IBM PC/AT, IBM PS/2, or PC/AT Clone ROM

BIOS firmware is never used except at those times, because it operates only in real address mode.

The protected mode provides four privilege levels, numbered zero through three. The kernel runs entirely in
the processor’s most privileged state, privilege level zero. This allows it access to the privileged instructions
that control I/O operations and the address translation tables. Kernel software is defined as all that which
runs with this hardware-defined privilege. Most kernel software runs on behalf of some process and is invoked
by system calls or emulation service requests. The remainder is used to perform initialization and handle
hardware interrupts. No software in Trusted XENIX uses privilege levels one or two.

All non-kernel software runs as part of some process (trusted or untrusted), and runs in the least privileged
hardware state, privilege level three. A trusted process (TP) is any process responsible for maintaining the
secure state of the system, or which has the capability to affect the secure state of the system (even though
it may be trusted only not to exercise that capability or privilege). In other words, any process which has
privilege not granted to ordinary user processes, or on which the secure operation of the system depends, is
a trusted process.

The TCB is written primarily in the C language, and uses a subset of the standard C program library.
All the TP code is written in C, but the kernel contains significant amounts of 80286 assembler language
code. Some of the assembler code is directly security-relevant (generally, the code which deals with memory
management, traps, and interrupts, and small parts of I/O drivers). The bulk of the assembler code is used
to provide emulation for the instructions which would otherwise have been implemented by the Intel 80287
or 80387 Numeric Processor Extension, when such a processor is not present in the hardware configuration.

2.6.2 Kernel Software

The Trusted XENIX kernel is organized into 10 conceptual subsystems which are summarized in table 2.2.

Each of these conceptual subsystems is implemented by a collection of source code and configuration tables
which are partitioned among 13 source directories.
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| Subsystem | Description |

Configuration Subsystem Defines size of system tables, allocates space for
some system data structures.

Initialization Subsystem Load system during boot, invokes swapper and
init.

System Call Subsystem Validates system call arguments, and calls appro-
priate handler in kernel.

Security Subsystem Responsible for all security decisions in the sys-
tem. Implements the Reference Monitor.

Process Subsystem Primarily responsible for swapping and context
switching for processes.

Memory Subsystem Manages address spaces, system memory, and the
swap space.

Input/Output (I/O) Subsystem Contains functions for implementing I/O in the
system, including all device drivers.

File Subsystem Implements the XENIX file system and associ-
ated functions (e.g., pathname resolution, inode
management).

Inter-Process Communication (IPC) Subsystem | Implements IPC mechanisms: semaphores, shared
segments, and message queues.

Miscellaneous Functions Subsystem Contains routines which do not fit in to any of the
other subsystems.

Table 2.2. Trusted XENIX kernel subsystems

This section summarizes the important aspects of each subsystem. The major functional responsibilities of
the subsystem are described, followed by a summary of its security-relevant activities. When a subsystem
implements a particularly important security mechanism, that mechanism is referenced and described in
detail later.

Configuration Information

This subsystem contains the two data files which define the size of system tables, various system data areas,
and any options specified when the Trusted XENIX kernel is built. These files contain source code statements
which reserve space for some system global variables. These files do not directly specify any security-relevant
information, but do contain information that has a bearing on the correct operation of the system (for
instance, the number of entries in the process table).

Initialization Subsystem

This subsystem is responsible for initial loading of the system, initialization of hardware devices, interrupts,
and address space tables. Its final act is to start the swapper and init trusted processes (see section 2.6.6,
page 36). It has no security responsibilities except for correct initialization of the system. The initialization
subsystem is the only Trusted XENIX code which ever runs in real addressing mode: during the earliest
stages of initialization, it switches from real to protected mode, and the system continues to run exclusively

24
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
2.6. TRUSTED XENIX SOFTWARE

in protected mode until the very end of the shutdown process.

System Call Subsystem

This subsystem contains the functions which receive control when a process issues a system call to the kernel’s
call gate entry point. It is responsible for argument checking and various housekeeping tasks and for selecting
the appropriate function elsewhere in the kernel to carry out the system call. Its security responsibilities
include much of the work of auditing and kernel argument validation (see section 2.6.5, page 31). It is also
partly responsible for general kernel isolation.

Security Subsystem

This represents the Reference Validation Mechanism which implements the Reference Monitor of Trusted
XENIX. It is a collection of functions called from elsewhere in the kernel to make access checks and implement
the Discretionary, Mandatory, Privilege, and Auditing policies. This is where actual interpretation of security
data (labels, permission bits, Access Control Lists (ACLs), privilege vectors) is performed, and where audit
messages are written to the audit file. It also implements the ACL system calls. Its sole responsibility is
security.

Process Subsystem

This subsystem contains the functions responsible for process multiplexing (via swapping) of in-memory
processes, and context switching among processes. It is also responsible for initial handling of all hardware
interrupts, management of the clock, and the sleep/wakeup functions used for synchronization within the
kernel. Finally, it includes the user interfaces (the kill, signal, and ptrace system calls) for inter-process
signals and process tracing. Its primary security responsibility is control of signals and other interactions
between processes: maintaining the process isolation required to meet the B2 System Architecture criterion.
A detailed description of process management appears later (see section 2.6.4, page 29).

Memory Subsystem

This subsystem contains the functions responsible for managing process address spaces, the system’s real
memory, and the swap space. It includes the system swap process, which is responsible for making all
decisions on when to swap a process to or from secondary storage. It also includes the system call handler
routines for process memory management and is responsible for loading executable files into a process address
space as part of the exec'® system call. Its major security responsibility stems from its memory management
functions, which include functions relating to Object Reuse, access control, kernel and process isolation, and
maintenance of the (hardware-interpreted) table that controls the operation of the hardware portion (see
section 2.5.4, page 13) of the Reference Validation Mechanism. Tt is also responsible for management of
privileges and setuid/setgid changes during the ezec system call.

16 There are a number of routines a process can use to execute a program, although there is only one entry point into the
kernel (ezecve) which is where all these routines eventually go. In keeping with common UNIX literature, these routines and
the system call they employ will be referred to collectively as the exec system call throughout this report.
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I/0 Subsystem

This subsystem is responsible for actual I/O operations within the kernel. All other subsystems call the I/O
subsystem to perform 1/0, either going through the buffer cache manager for block device I/O, or through the
line discipline and character list managers for character I/O. The I/O driver routines are called to initiate
and manage the physical transfer. No security decisions are made by this subsystem, but the character
I/O portion is responsible for implementing the Secure Attention Key (SAK) mechanism (see section 2.8.6,
page 79).

The standard Trusted XENIX device drivers for physical devices include: disk I/O (fixed disk and diskette),
tape 1/0, serial communications adapter (for connected terminals), STU-III'? (for a STU-III device con-
nected to a serial port, see section 2.6.7, page 44), printer (parallel) adapter, keyboard, and graphics
(monochrome and color). The keyboard driver is responsible for interpreting the “press/release” codes
delivered by the keyboard hardware interface and translating these to ASCII codes. The keyboard driver in-
teracts directly with the microcontroller firmware in the keyboard, and does not use any of the IBM PC/AT,
IBM PS/2, or PC/AT Clone’s ROM BIOS routines. The graphics drivers, similarly, interact directly with
the appropriate graphics controller hardware, translating ASCII codes to their screen representations, and
do not use the ROM BIOS routines.

In addition, there are drivers for “logical” devices. Two of these (/dev/null and /dev/tty) represent “security-
eccentric” devices that are always accessible to all processes for both reading and writing (without regard
to mandatory access controls), either because they do not represent storage objects!® (null) or because they
are simply a form of indirect reference to a real device which does obey mandatory access controls (#ty).
Other logical devices (such as /dev/mem, /dev/kmem, and /dev/swap) provide access to internal TCB data
structures and are accessible only to appropriate trusted processes.

File Subsystem

This subsystem includes all the functions that implement the Trusted XENIX file system, above the level
of basic buffered I/O. This includes pathname resolution, directory management, inode management, access
control, file locking, file I/O; file and inode space allocation, pipe handling, filesystem mounting, and hidden
subdirectory deflection (see section 2.8.9, page 82). Most of this subsystem is directly concerned with
responding to system calls manipulating user-visible objects. Its main security responsibility is invocation of
the Reference Validation Mechanism discretionary and mandatory access controls on all file system objects.
The pathname resolution part of the file subsystem is responsible for some of the access checks and for
implementing hidden subdirectories.

Interprocess Communication Subsystem

This subsystem implements the user-visible inter-process communication (IPC) objects: XENIX Semaphores,
System V Semaphores, XENIX Shared Memory Segments, System V Shared Memory Segments, and System
V Message Queues. Its functions are all directly related to providing the system call interface for these objects.
Its major security responsibility is invocation of the Reference Validation Mechanism for discretionary and

17Note that this is actually not a device driver, but rather a trusted process that utilizes the serial device driver to control
the STU-III deive.

18 For more on storage objects, see section 2.7.2 on page 57.
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mandatory access controls on IPC objects. It is also responsible for enforcing Object Reuse controls on these
objects.

Miscellaneous Functions

This subsystem contains some miscellaneous kernel routines that do not belong with any particular subsys-
tem: shutdown, kernel debugging support (disabled in Trusted XENIX), kernel performance monitoring,
random number generation, floating point emulation, assorted assembler utilities, and miscellaneous system
calls. They have no security responsibilities.

Header Files

Although not identified as a subsystem in the same sense as the other subsystems just described, the collection
of files which declare global data, types, and structures is important and needs to be discussed. The header
files consist of collections of global structures and variables. When a header file is #included in a .c
source file (or in another header file), then all of the structures and variables declared in that header file
are available to the #includeing file. This is the method used to pass global variables in the system.
Each Trusted XENIX module #includes only those header files which have some combination of variables,
structure definitions, static data (e.g., those elements which are #defined), and macros it uses. Each header
file contains comments identifying the subsystem to which each variable and structure “belongs.” A large
number of data declarations may appear in each header file, and all of these are accessible to a source file
which #includes it, even though only one declaration may be actually used by the #includeing module.

2.6.3 File System

The filesystem is a collection of information stored on disk. The filesystem is managed by the kernel, which
uses a number of data structures (e.g., superblock, inode list, and directory) to store the necessary control
information.

The disk is divided (by the TSP) into a number of partitions (maximum of 4) in which filesystems reside.
The disk partition table, which resides in the first partition, defines which areas of the disk are reserved for
which partitions. A partition’s type can be system, for root directory files, or user, for programs and files of
the operating system.

The installation of Trusted XENIX removes already existing partitions from the disk. Although it is possible
to store different operating systems (e.g., DOS) in different partitions, this capability is not supported. The
TSP is instructed in the TFM to ensure that DOS partitions (if there are any) are not marked bootable. A
filesystem is created on a partition via the fs, device, and mkfs commands.

A filesystem can be viewed at the highest level as beginning with a boot block, followed by the super block,
which is followed by the inode list, which is followed by a collection of data blocks.

The following will briefly describe each of the important data structures and how each supports the filesystem.

e The boot block: The boot block is the first sector of every filesystem. The boot block usually
contains the bootstrap code that is read into the machine to initialize the system. While the system
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only requires one boot block, every filesystem must have a boot block. As a result, it is possible for
the boot block to be empty.

e The superblock: The superblock is stored beginning in the first sector after the boot block. The
superblock contains the high-level information necessary to describe the filesystem. For example, the
superblock contains a pointer to the root of the filesystem, the size of the filesystem, and pointers to
the free lists, the next available file entry and next available data space.

e The inode list: The inode list is stored beginning immediately after the superblock. The inode list is
simply a list of inodes where each inode is referred to by its index in this list. This index is known as
its inode number. An inode is the fundamental filesystem description of a file (and other objects with
a filesystem representation) and its attributes. An inode contains file type information (e.g., block or
character special, file, directory), access control information (e.g., file owner’s uid and gid, protection
bits), status information (e.g., date/time file was last used, date/time file was last modified), number
of links to the file, file size, and pointers to the disk addresses of the data blocks that comprise the
file. Also in the inode as one of the permission bits is the “sticky bit” (settable by TSP and SSA). The
kernel does not release memory allocated to a file which has its sticky bit set.

e Data blocks: The data blocks are the containers for the information that is to be stored in the
filesystem. Any particular data block may be associated with only one inode; however, many data
blocks may be associated with a single inode.

The main memory data structures which support the filesystem include a per-user open file table. This table
is indexed by file descriptors and its entries point to the entries in the system file table, where an entry for
each open file is maintained. The system file table entry includes items such as open flags, seek cursor and
a pointer to the system inode table. Entries in the system inode table are copies of the on-disk inode (with
some additions such as status information, logical device number of containing filesystem, referent count,
etc) for a file in use. Associated with a main memory inode is the lock list (singularly linked list of locked
regions) for that inode. All lock lists are kept in a Lock Table. The system periodically executes the update
routine to write main memory data structures (superblocks, inodes, and disk blocks from the block buffer
cache) to disk.

Mounting File Systems

Filesystems (stored on disk partitions) have an assigned minimum and maximum security label, and can be
mounted and dismounted. Users who can run the necessary programs installed with the MOUNT privilege
can mount and unmount filesystems.

The kernel maintains a mount table with entries for all the mounted filesystems. The Secure Devices table
(s-device) contains device ranges which are checked by the mount TP against the security label range of
the filesystem (recorded in the superblock). The mount TP also rejects any filesystem not marked as a TIS
Trusted XENIX filesystem in the superblock and creates a /.ACL subdirectory in the mounted filesystem’s
root directory if the mount is write-enabled and the subdirectory does not exist. The Secure File Systems
Table (s_fs), which specifies filesystem mount points, contains a mountability flag for each mount point. This
flag determines what type of user (ordinary, TSP, SO) may perform the mount.

A TSP may mount/unmount any filesystem. An SO may mount/unmount all filesystems that are not marked
“TSP-mountable”. Ordinary users may mount/unmount filesystems marked “user-mountable” provided
they have write access to the s_fs table-specified mount point. The TSP and SO use the mount and umount
commands to mount and unmount filesystems. As shipped, the system has this privileged command available
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only in the SO privileged trusted shell. However the TSP can change the Command Table (s_cmd) to make
the mount command available to ordinary users (for displaying the mount table only) in the ordinary user
restricted shell.

Ordinary users must use the usrmnt command to mount filesystems. The usrmnt command invokes the
usrmnt TP, which in turn will use the mount system call. However before calling mount, usrmnt checks for
any privileged or setuid/setgid files residing on the filesystem. If the filesystem has these files residing on it
and is to be mounted read-only, the mount is rejected. If the filesystem has these files residing on it and is
to be mounted write-enabled, all file privileges and setuid/setgid bits on that filesystem are stripped before
the filesystem is mounted.

2.6.4 Process Management

The process subsystem is responsible for creating a multitasking environment. It supports the concurrent
processing facilities such as fork (create a “child” process) and wait (wait for a child process to terminate).
In addition, it maintains system time and date, provides signal, process tracing, and time event services,
handles hardware interrupts and traps, and manages the processor.

The process subsystem comprises the following seven distinct modules, of which the most significant are the
processor manager and the process manager:

First level interrupt and trap manager
Signal manager

Second level trap manager

Second level interrupt manager

Time manager

Processor manager

Process manager

The processor manager is responsible for creating a virtual processor environment for each process by mul-
tiplexing the one real processor among the various processes.

The process manager module maintains the internal representation of a process, supports the Trusted XENIX
concurrent processing facilities such as fork and wait, and manages the attributes associated with a process.
Each process is associated with a unique identifier, called the process ID (pid), and some attributes as
described in section 2.7.1, page b4.

A process can be executing user code or kernel code—distinctions recognized in hardware via the privilege
level mechanism. When it is executing user code, it is in the user mode. When it executes a system call that
requires the execution of some kernel code, the process changes to kernel mode. The single gate entry point
to the Trusted XENIX kernel is an Intel 80286 or 80386 call gate located in the GDT. When the gate is
called, the CPU switches modes from privilege level three (user mode) to privilege level zero (kernel mode),
switches to the kernel stack, and enters a subroutine called kentry.

Even if a process makes no specific requests for operating system services, the operating system will be
invoked to perform bookkeeping operations that relate to the user process: handling interrupts, scheduling
processes, managing memory, and so on. Processes in user mode can access their own instructions and data,
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Execution Mode | Description |

User Executable Code (from program file)
User Stack

User Heap

User Shared segments (optional)

Kernel Swappable Process Context (u_area)
Kernel Local Descriptor Table

Kernel Stack

Kernel Global Data (per-system)

Kernel Executable Code

Table 2.3. Process Layout

and other processes’ instructions (for shared text segments) but not kernel instructions and data. Processes
in kernel mode can access both kernel and user addresses. This protection is provided by the hardware.

Although the system executes in one of two modes, the kernel runs on behalf of a user process. The kernel
is not a separate set of processes running in parallel to user processes, but rather it is a part of each user
process.

The system hardware is aware only of the distinction between the user mode and the kernel mode; it cannot
distinguish between instructions from different processes or among users executing these processes. The
operating system keeps internal records to distinguish the many processes executing on the system.

Process Address Space

The address space of a process is structured into parts represented by one or more Intel 80286 or 80386
segments, as shown in table 2.3. The user executable code may be a single segment for small model programs,
or multiple segments for medium, large, and huge model'® programs. The heap may be multiple segments
for large and huge model programs. Shared segments are represented by one or more hardware segments
for each segment (System V Shared Memory or XENIX Shared Memory) being shared. The kernel areas
for the u_area, LDT, and the stack all share the same hardware segment. The kernel executable code is
multiple segments because the kernel is a medium model program. The kernel executable code also includes
the kernel’s call gate segment (see section 2.6.5, page 31).

The user-mode parts of an address space are initialized from the program file specified in an ezec system
call. The size of the stack and heap segments may be changed with the sbrk system call. Shared segments
may be added using system calls (e.g., shmget and shmop). The kernel-mode parts of the address space are
initialized during system initialization and process creation. For the most part, the kernel-mode parts are
inherited by all processes at creation time and are modified only slightly.

The LDT of the address space is the hardware-interpreted table that defines the per-process address space
(the user-mode parts). Additionally, a system-wide shared table known as the GDT describes the kernel-

19The term “model” refers to the type of addresses (pointers) which can be used within a program and is an artifact of the
Intel 80286 or 80386’s 65,536 byte segment size. The small model uses only one segment each for code and stack, the medium
model uses multiple segments for code and one for stack, and a large model program uses multiple segments for each. A huge
model program is a Trusted XENIX concept meaning a process whose segments are large enough to fit in memory, but too large
to be swapped to the swap space on disk. Ordinary users can not create huge model processes on Trusted XENIX.
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mode address space. Because some parts of the kernel-mode elements are actually per-process (the stack,
LDT, and u_area), these parts are copied in and out of the system-wide (as defined in the GDT) segment
for kernel process context at every process context switch.

Logically, the stack, LDT, and u_area contain similar information: process context that must be addressable
and in main memory only when the process is running. They contain kernel information required only when
the kernel is running (when invoked by a system call, for instance) on behalf of that particular process.
Other process context, which may be required when performing kernel services in another process or when
handling interrupts, is in the process’ proc structure, which is kept in kernel memory in a permanently
allocated table accessible to all processes.

Interrupts and Signals

Trusted XENIX allows devices such as I/O peripherals or the system clock (interval timer) to asynchronously
“Interrupt” a process. On receipt of the interrupt, the kernel saves the current context (image) of the
process, determines the cause of the interrupt, and services the interrupt. The kernel is able to prevent the
occurrence of some interrupts during critical activity; principally those which could corrupt data if interrupts
were allowed. Traps have a similar effect on a process but are the result of unexpected events caused by the
process, such as addressing illegal memory, executing privileged instructions, or dividing by zero.

Analogous to the interrupt and trap mechanisms in hardware is a Trusted XENIX facility called signal,
which is implemented in software. Signals provide a mechanism for the course of one user process to be
interrupted, diverted, or terminated by the action of another process or as the result of an error or terminal
operator action. The kernel handles signals in the context of the user process that receives them, so a process
must run to receive them. Trusted XENIX handles signals in three ways: the process exits on receipt of
the signal, it ignores the signal, or it executes a particular (user) function on receipt of the signal. Access
control checks for allowing signals between processes include discretionary, mandatory, and privilege checks
(see section 2.7.2, page 66).

2.6.5 Kernel Interface

The Trusted XENIX kernel interface is provided by system calls, and, if the system does not include an Intel
80287 or 80387 Numeric Processor Extension, by hardware-detected exceptions requesting emulation of the
80287’s or 80387’s instructions. Additionally, the kernel is invoked whenever any hardware-detected invalid
operation (such as an invalid address, invalid opcode, or overflow) occurs, although this is not the usual way
to request a kernel service, and normally results in process termination.

Floating point emulation requests are received by the hardware interrupt handler and sent on directly to the
floating point emulator code in the kernel. They never cause I/O or otherwise interact with the rest of the
kernel and are of no further interest here.

Ordinary system calls are made by a CALL instruction referencing the only call gate in the Trusted XENIX
address space. The process switches from privilege level 3 (user mode) to privilege level 0 (kernel mode)
and transfers to the assembler function kentry. This saves some registers and prepares the ring 0 calling
environment, then calls the C function scall. In scall, the process environment is consulted to determine
which system call table to use (this depends on what type of program file the process is executing: Version
7, System III, or System V; this information is loaded into the process environment when the program is
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ezeced), and an entry is selected from the table based on the system call number found in the processor’s AX
register on entry to kernel mode. This table entry specifies the number of arguments and their types; this
information is used to copy the arguments from registers or from the user stack into the kernel’s argument
storage area. Different functions are used for copying and validating arguments depending on the memory
model in use by the calling process’ program file; however, all arguments are kept in the same canonical
format once copied into the kernel.

Once arguments are copied, auditing setup (if required) is done, an abnormal exit handler is set up, and
the system call service routine is called. When it returns, or an abnormal exit (via longjump) occurs, scall
regains control, copies the return arguments back to user space, and performs any necessary post-processing,
such as generating final audit messages, rescheduling the process, and restoring parts of process context.
Finally, it returns to kentry, which restores registers and returns to user mode.

In system call service routines, parameters are referenced through a structure pointed to by the process
global variable u.u_ap. By the time the service routine is called, all scalar parameters have been copied
into kernel storage, and are referenced directly. Because the kernel copy is protected from modification once
copied, scalar parameters are inherently safe from multiple reference problems—and access to parameters was
already ensured by the checks made when scall copied them into kernel space.

For pointer parameters, such as character strings or arrays, the pointer itself has been copied into kernel
storage, but the data pointed to have not been. Therefore, each system call routine must copy the data itself,
ensuring that they are accessible to the user process. The system call routines must also be explicitly coded
to avoid multiple references to user parameter data. Because UNIX started out as a system where direct
parameter references were impossible, Trusted XENIX inherited a well-defined programming discipline for
copying data between kernel and user space: the copyin and copyout routines. These TCB routines make the
appropriate access checks, so that the system call routines themselves need not be concerned about invalid
values in user-supplied pointers. These routines use the Intel 80286 or 80386-provided hardware instructions
for parameter validation.

Multiple parameter references are avoided by programming convention, again a fairly centralized one. Be-
cause most pointer parameters are used to point to pathnames, and the standard mechanism for examining
pathname parameters processes the user data one byte at a time, this nearly guarantees that pathname
parameters are referenced precisely once in user space. To re-use the data from user space (that is, copy and
interpret exactly the same data residing in user space) rather than making a copy or otherwise interpreting
it the first time it is referenced in the kernel and saving the result would be awkward and inefficient. Other
pointer parameters are simply copied in their entirety, exactly once, near the beginning of the routines that
reference them. These protections are provided by programming convention and system structure, rather
than by any actual mechanism.

That these programming conventions be followed in all system calls is critical to the security of the system.
Because direct references through user-supplied pointers work in Trusted XENIX’s Intel 80286 or 80386-based
implementation (that is, they do not fault), no automatic detection for a missing call to copyin or copyout
exists, as might be found in systems with less sophisticated memory architectures. Similarly, no automatic
mechanism for detecting multiple references to user parameters exists. Enforcement of these conventions is
assured by the Configuration Management system’s code review procedures (see section 2.9.2).

The single interface point (scall) with its table-driven interpreter and parameter copying mechanism encour-
ages simple and uniform interfaces to system calls. This, in turn, can reduce the complexity of system call
handlers, and thus, of the TCB itself. Although the Intel 80286 or 80386 architecture would permit more
complex and/or efficient interfaces, Trusted XENIX does not use those hardware features. The uniform
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interface also simplifies auditing and processing of error returns.

2.6.6 Trusted Processes

This section describes the role of Trusted Processes (TPs) within Trusted XENIX and the specific privileges
and capabilities of each TP. The following types of privilege are provided:

Special user and group identity (see section 2.3.2, page 7): Processes running with these special
identities have “discretionary” access to administrative files and
directories not accessible to ordinary users. This privilege is imple-
mented using Trusted XENIX DAC and user identity mechanisms,
by assigning special uids and gids to certain user and group iden-
tities.

This privilege type is used primarily to partition the administra-
tive databases and make them accessible only to the TPs which
manage them. The special identity may be administratively as-
signed (as is the case for “permanent” TPs) or dynamically ac-
quired through use of the setuid/setgid mechanism (see section 2.8.1,
page 68), which can change a process’ uid based on attributes of
the process’ executable program file or through use of the setuid
system call.

Generalized Privilege Mechanism (GPM) (see section 2.8.3, page 71): Processes running with GPM privi-
leges are permitted to invoke privileged system calls and privileged
options of other system calls. The GPM privileges are always
acquired dynamically based on attributes of a TP’s program file
(much like acquiring a special uid through the setuid/setgid mech-
anism). Each GPM privilege?° corresponds to one specific privi-
leged operation, so that a TP may be restricted to performing only
those operations necessary for its correct functioning. Addition-
ally, the GPM privileges may be acquired and dropped dynami-
cally during the operation of a TP, so that privileged operations
can be explicitly limited to small regions of code. This is partic-
ularly important for the privileges that provide exemption from

access control (MAC_EXEMPT and DAC_EXEMPT).

Trusted XENIX differs from most UNIX and UNIX-like systems in that uid 0 (root) has no special privi-
leges except for access to root-owned files. The GPM mechanism entirely replaces the privileges normally
granted to root-uid processes with regard to system calls and exemption from normal access controls. This
is the cornerstone of the system’s implementation for Trusted Facility Management and meeting the “least
privilege” aspect of the System Architecture requirement. The TSP runs as root in single-user mode.

Trusted XENIX contains three types of TPs:

User Invoked: invoked by a command or ezec system call from an unprivileged user or process, not involving
the trusted path (see section 2.8.6, page 79). These are used for functions which do not require

20 There are 36, and a TP may be given any subset of them.
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a trusted user interface, but which do require that the program performing the operation have
some privilege, which may be either GPM privileges or a special identity. Examples include
mkdir and Ip.

Trusted Shell: invoked by a command issued to the trusted shell (¢sh). The trusted shell is invoked by estab-
lishing a Trusted Path?! using the Secure Attention Key (SAK) mechanism (see section 2.8.6,
page 79). This places the user in direct communication with the trusted shell, which in turn
invokes selected TPs. Some trusted path TPs require no additional privileges (GPM or special
uid) to perform their functions, but are trusted to guarantee that the information displayed or
operation performed is what the user requested. Others require additional privilege (like the
user-invoked TPs) as well as depending on direct communication with the user. Examples of
trusted TPs include Is (which is not otherwise privileged), star (which is privileged), and the
administrative and operator interface programs (which require that the user has selected an
administrator or operator group ID).?2

Permanent: created during system initialization or by a privileged user and always running to perform
system services. The “permanent” TPs always have the special uid or GPM privileges. Most
are created during system initialization, but some (the printer spooler process, for instance)
may also be restarted dynamically by privileged users. Examples include init, getty, Ipsched,
and swapper.

Trusted Process Protection Mechanisms

All TPs are coded in a uniform manner to provide greater assurance of correct implementation. Source code
modules for all TPs include standard commentary which identifies the TP name, source file name, short
description of purpose, and installation data, which includes a list of the privileges given to that TP and the
rationale for doing so. This standard commentary is followed in each of the TP source files by code which
implements a standard initialization of the TP environment. The routines listed below provide the primary
functions used by the standard initialization.

o chkTPstate() function: takes as its input parameter a bit vector representing a set of allowed TP states.
If the TP state is one of that set, chkTPstate() returns that state; otherwise it returns STATE_NULL.

o close_all_but(arg) system call: the specified “arg” gives a list of file descriptors which should not be
closed. All other file descriptors are closed.

e umask command: sets the default mask used to set the DAC protection bits at object creation time.

e alarm call: executed, if appropriate, to set/clear the alarm timer.

e sig_tgnore call: causes those signals listed to be ignored by the Trusted Process. This mechanism is
used to prevent signals from disruptin security relevant actions being taken by the Trusted Process.

In addition, each of the TPs depends on some of the security mechanisms listed below. Kernel mechanisms
include:

1. The Generalized Privilege Mechanism

21 Although tsh can be invoked as an ordinary user command, the TPs it invokes will detect this and refuse to exercise their
privileges because they were not invoked through the Trusted Path.

22Trusted XENIX provides a restricted trusted shell for the administrator (or operator) wishing to use administrator (operator)
TPs. A separate such restricted trusted shell is provided for each of the special user types, and is invocable only from within
the (normal) trusted shell.
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2. Mandatory Access Control and Discretionary Access Control mechanisms (except where a trusted
process is exempted by the GPM)

3. The Secure Attention Key (SAK)-many TPs may be invoked only by using the trusted path
4. Object Reuse mechanisms
5. Kernel and hardware-provided isolation mechanisms

6. Audit mechanisms
TP-specific mechanisms are:

1. The Power Hierarchy Mechanism, used only by Trusted Processes, defines a hierarchy among admin-
istrative users (see section 2.8.3, page 72).

2. The scheck TP, which performs integrity and consistency checks on security profiles and all command
and data files required for secure operation of the system. It also checks the filesystem to determine
whether it satisfies the compatibility rule?® and checks for the presence of malicious programs (e.g.,
those that have either of the setuid/setgid permission bits set to a non-existent uid/gid or to a pseudo-
user/group other than as specified in s_install), or those with privileges not in s_install.

3. The chkCPL() function, which takes the session security level as the input parameter and returns
TRUE if Current Process Level matches the specified security level, else returns FALSE.

In Trusted XENIX, all TPs and their related files must be specified in the Installation Table s_install. This
specifies the complete protection controls required for the secure operation of the system. Only the TSP
has access to the s_install file. During Trusted XENIX installation, all TPs listed in s_install are given the
attributes stated within the table entries. Note that special attention has been given to how TP related
files are protected. In general, in order to support the TCB isolation requirement, files containing security
relevant information is protected from access by unauthorized users. These attributes are:

program pathname
owner

group

mode

ACL

security label
privileges

Trusted XENIX’s Trusted Processes

The following tables describe all the TPs in Trusted XENIX. The tables group the TPs into their types,
as described above (i.e., user invoked, trusted path, permanent). The table entries show which users may
execute the TP, the GPM privileges given to the TP, the effective uid/gid used by the TP, and any additional
notes.

22The “compatibility rule” is described in detail on page 25 of Secure Computer Systems: Unified Exposition and Multics
Interpretation [BELLY].
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For user-invoked TPs, the effective uid and effective gid are set by the setuid/setgid mechanism. For per-
manent TPs, they may be inherited from the caller. When the effective uid and effective gid are listed as
something other than the invoker of the TP, the TP may be assumed to execute with its setuid and/or setgid
bits(s) turned “on.” It may, in that case, toggle its effective uid (effective gid) between that of the invoker
and the uid (gid) specified in the uid (gid) field (see section 2.8.1, page 68).

Permanent TPs 24 are either always running or are dynamically created by processes that are always running.
They do not run with their setuid or setgid mode bits turned “on.”

User-Invoked TPs

running process

continued on next page

TP Name and Function Privileges uid gid Notes
auditnam: defines initial | AUDITLOG, audit audit Can be invoked only by TSP in
state of audit parameters | DAC_LEXEMPT, MAINT_-MODE.
file MAC_EXEMPT,
SETUID
c_attr:  shows current | none bin invoker
process attributes
cancel: cancels line | KILL, SET- | Ip 50
printer requests PRLBL, AUDIT-
LOG, SETUID,
MAC_EXEMPT
chmod: changes mode of | none invoker | invoker
files
df: reports the number | none sysinfo | invoker | sysinfo is a pseudo-user which owns
of available disk blocks special disk files containing status in-
formation.
dmesg: displays system | none sysinfo | invoker | Can be invoked only by TSP in
messages MAINT_-MODE, or by members of
the cron group.
emkdir:  performs se- | SETUID invoker | invoker
tuid/setgid to effective
uid/effective gid, then in-
vokes mkdir
format: formats | none invoker | remmed | format is restricted to the console ter-
diskettes minal.
getprstate: returns state | none invoker | invoker
of user process
tpes: reports IPC facility | none sysinfo | invoker | Users are not allowed to see any infor-
status mation about IPC objects at a higher
security level than the CPL.
kill: sends a signal to a | AUDITLOG bin bin

24Three of the entries in the permanent TP table are not TPs: swapper is considered to be part of the kernel, and cron and
update, both of which are initiated during system initialization, do not execute with privileges.
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User-Invoked TPs (cont)

TP Name and Function Privileges uid gid Notes
login: gives access to the | MAC_EXEMPT, invoker | invoker | login is not actually invoked by a user
system DAC_EXEMPT, command but rather by pressing the
AUDIT, AUDIT- SAK. It is also executed by the getty
LOG, CHOWN, TP. More detailed information on lo-
NICE, SETFLBL, gin is given in the overview section on
SETPRLBL, SE- Subjects.
TUID, ULIMIT
ls: lists the contents of a | none invoker | invoker | Is will print out directory entries only
directory at or below the CPL.
Ip: sends requests to the | MAC_EXEMPT, Ip 50 lp writes the requested file to the
line printer system SETFLBL, spool directory at the time of the re-
AUDITLOG quest, operating under the requestor’s
uid. The Ipsched daemon notes the
request and performs the printing.
lpadmin: configures line | AUDITLOG lp 50 Can be invoked only by TSP in main-
printer spooling system tenance mode.
Ipstat:  reports status | AUDITLOG, lp 50 An unprivileged user may view only
of printer, daemon, and | MAC_EXEMPT his or her own requests at or below
queues their current privilege level. The SO
can view all requests.
mkdir: creates a direc- | DAC_EXEMPT, invoker | invoker | Will not create a directory at a level
tory LINK_DIR, below or incomparable to the parent
MKNOD, directory.
SETFLBL,
AUDITLOG
mkfs: makes a file sys- | AUDITLOG invoker | invoker | Can be invoked only by the TSP in
tem MAINT_-MODE.
mu_dir: moves directo- | LINK_DIR invoker | invoker | Trusted not to create loops in direc-
ries SIGNAL tory structure. Can also be invoked
by mv command.
ps: reports process sta- | AUDITLOG sysinfo | invoker | Displays status only for processes at
tus or below current level of requester.
rmdir: removes a direc- | DAC_LEXEMPT, invoker | invoker
tory LINK_DIR,
MAC_EXEMPT
AUDITLOG
slutmp: filter for the file | none root invoker | /etc/utmp contains one entry for each
Jetc/utmp terminal in the system. Users may see
only those entries that are at or below
their CPL.

continued on next page
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User-Invoked TPs (cont)

TP Name and Function

Privileges

uid

gid

Notes

tsh: trusted shell

none

ivoker

ivoker

This is a table driven command in-
terpreter which assures communica-
tion between the user and the TCB.
The table /etc/security/s_.cmd drives
the interpreter, and may be edited
only by the TSP. Any user may in-
voke the trusted shell by using the
SAK mechanism. Most commands in-
vocable by the trusted shell contain
a “guard” which prevents them from
executing outside the trusted shell
(see section 2.8.6, page 79).

usrmnt:
mounts removable-media
file system

AUDITLOG,
CHMOD,
CHOWN,
DAC_EXEMPT,
MAC_EXEMPT,
MOUNT,
SETFLBL, SET-
PRLBL, SIGNAL

ivoker

ivoker

Trusted Shell TPs

Name and Function | Run by Privileges uid gid Notes
accept: allows | SO MAC_EXEMPT, lp 50
printer requests AUDITLOG
accton: enables or | AA ACCT, AUDITLOG | invoker | invoker
disables process ac-
counting
acl: ACL operations | SSA ACL, AUDITING, | invoker | invoker | SSA executes acl from
DAC_EXEMPT, the privileged menu of
MAC_EXEMPT the trusted shell. Privi-
leges are applied only in
this case. Unprivileged
users execute acl as an
ordinary command.
audit_star: AUDIT | AUDITLOG, invoker | invoker | Can be invoked only
allows auditor to in- SETUID from the Auditor menu
voke star of the privileged trusted
shell.
continued on next page
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Trusted Shell TPs (cont)

Name and Function | Run by Privileges uid gid Notes
auditsh: performs | AUDIT | AUDIT, audsit audsit Can also be invoked by
security audit trail AUDITLOG /etc/re at system initial-
operations ization.
c_chaudlvl: changes | AUDIT | AUDITLOG, SET- | bin invoker is a pseudo-user
audit level of PRLBL which owns many of the
user/group system files
c_chkey: displays | SSA MAC_EXEMPT, bin invoker | SSA may use other un-
and/or changes the AUDITLOG trusted processes to read
star encryption key (only) the star key.
c_chlabel: changes a | SSA DAC_EXEMPT, invoker | invoker
file security label MAC_EXEMPT,
SETFLBL, AUDIT-
LOG
c_chmod: changes | any user | DAC_.EXEMPT, invoker | invoker
file mode (includ- MAC_EXEMPT,
ing setuid and setgid CHMOD,
bits) AUDITLOG
c_chowner: changes | SSA DAC_EXEMPT, invoker | invoker
file owner and group MAC_EXEMPT,
CHOWN, CHMOD,
AUDITLOG
c_fizlabel: sets filela- | SSA AUDITLOG, invoker | invoker
bel equal to label of DAC_EXEMPT,
containing directory MAC_EXEMPT,
(i.e., “fix”) SETFLBL
c_halt: halts the sys- | any user | SHUTDN, invoker | invoker | Must be invoked from
tem DAC_EXEMPT, the system console.
AUDITLOG
c_kill: kills any pro- | SSA AUDITLOG, KILL invoker | invoker
cess (except process
1)
cls:  privileged Is | SSA MAC_EXEMPT, invoker | invoker
command; lists con- DAC_EXEMPT,
tents of a directory AUDITLOG
c_table: shows secu- | SSA none invoker | invoker
rity tables
c_zaptable: editor for | SSA AUDITLOG, bin invoker
the security tables CHOWN,
DAC_EXEMPT,
SETFLBL,
MAC_EXEMPT

continued on next page
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| Trusted Shell TPs (cont)

Name and Function | Run by Privileges uid gid Notes
server-conn: estab- | any user | AUDITLOG, invoker | invoker
lishes connec- CHMOD, CHOWN,
tion and login ses- DAC_EXEMPT,
sion with server ma- DEVICE, KILL,
chine MAC_EXEMPT,
SETFLBL, SIG-
NAL, VHANGUP
disable: SO MAC_EXEMPT, bin invoker
stops a printer or a KILL, SETUID, AU-
terminal DITLOG
disconnector: closes | any user | AUDITLOG, invoker | invoker
connection DAC_EXEMPT,
KILL,
MAC_EXEMPT
enable: starts a | SO MAC_EXEMPT, bin invoker | This ezecs disable to dis-
printer KILL, SETUID, AU- able a printer.
DITLOG
haltsys:  closes file | any user | AUDITLOG invoker | invoker | haltsys is directly invoca-
systems and halts ble only by the TSP. It is
system indirectly invoked via the
halt option of the privi-
leged trusted shell or the
c_halt command.
lpmove: SO MAC_EXEMPT, lp 50
moves print requests AUDITLOG
among queues
Ipsched:  schedules | SO MAC_EXEMPT, lp 50 This is essentially a “per-
line printer requests KILL, AUDITLOG, manent” trusted process:
from the spool file SETUID, the purpose of the SO’s
DAC_EXEMPT, lpsched command is to
SETPRLBL start the Ipsched daemon
process.
Ipshut: stops print | SO MAC_EXEMPT, Ip s0
daemon AUDITLOG
mkwitmp: enables | AA DAC_EXEMPT, invoker | invoker
session accounting MAC_EXEMPT,
SETFLBL,
CHMOD, CHOWN,
AUDITLOG
continued on next page
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Trusted Shell TPs (cont)

Name and Function | Run by Privileges uid gid Notes
mount: mounts a | any user | MOUNT, root invoker
filesystem AUDITLOG,
DAC_EXEMPT,
MAC_EXEMPT,
CHOWN, WILD-
CARD, SETPRLBL
passwd: changes log | any user | MAC_EXEMPT, bin invoker
in password AUDITLOG, SET-
FLBL, SIGNAL
pwd: displays cur- | any user | none invoker | invoker
rent working direc-
tory
reject: disallows | SO MAC_EXEMPT, lp 50
printer requests AUDITLOG
rmwimp: disables | AA MAC_EXEMPT, invoker | invoker
session accounting DAC_EXEMPT,
AUDITLOG
scheck: verifies se- | SSA MAC_EXEMPT, invoker | invoker | Performs security checks
curity consistency of DAC_EXEMPT, (consistency) on system
system ACL security profiles and all
command and data files
required for secure sys-
tem operation. Is also in-
voked by init on system
initialization.
star: Secure Tape | any user | MAC_EXEMPT, invoker | invoker | Both the SO and TSP
Archiving Program DAC_EXEMPT, can copy any file. Other
ACL, users can copy
CHMOD, CHOWN, only their own files (see
SETFLBL, AUDIT- section 2.8.7, page 80).
LOG
stsort: sorts tempo- | any user | none invoker | invoker | stsort is invoked by star:
rary files hence, it runs in the
trusted shell.
treecheck: checks en- | SSA ACL, invoker | invoker | Invocable through
tire file system for se- DAC_EXEMPT, scheck.
curity violations MAC_EXEMPT

continued on next page
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| Trusted Shell TPs (cont)

Name and Function | Run by Privileges uid gid Notes
client-tpath: invokes | any user | AUDITLOG, invoker | invoker
Trusted Shell on DAC_EXEMPT,
server machine MAC_EXEMPT,

DEVICE, SIGNAL
umount: unmounts | any user | MOUNT, root invoker
a filesystem AUDITLOG,

MAC_EXEMPT,

DAC_EXEMPT
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Permanent TPs

Name and Function | Init. by Privileges uid gid Notes
audswap: monitors | auditsh | AUDITLOG, audit audzt
available space in au- DAC_EXEMPT,
dit file MAC_EXEMPT,
SETUID
client_daemon: /etc/rc | AUDITLOG, invoker | invoker | Invoked during system ini-
manages STU-IIT CHMOD, CHOWN, tialization, from /etc/rc.
connections DAC_EXEMPT,
DEVICE, KILL,
MAC_EXEMPT,
MAINT_MODE,
SETFLBL,
SHUTDN,
VHANGUP
cron: executes com- | /etc/rc | none cron bin Invoked during system ini-
mands (specified in tialization, from /etc/rc.
crontab  files) at
specified dates and
times
getty: polls terminal | it TP | MAC_.EXEMPT, invoker | invoker
characteristics, DAC_EXEMPT,
setup AUDITLOG
wet:  initializes ter- | system all privileges invoker | invoker
minal, spawns login | at boot
processes time
nwprt: outputs page | Ipsched | none invoker | invoker
headers/footers and
banner pages
stuie: es- | et TP | AUDITLOG, invoker | invoker
tablishes connection CHOWN,
with client machine DAC_EXEMPT,
DEVICE,
MAC_EXEMPT,
SETFLBL

continued on nexrt page
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| Permanent TPs (cont)

Name and Function | Init. by Privileges uid gid Notes

swapper: swaps pro- | kernel kernel process with | root root This TP is unique. It runs
cesses within the ker- full access to kernel entirely within the kernel
nel address space and has no ring three ad-

dress space. It never makes
system calls or performs
other privileged operations,
but instead calls the swap-
ping primitives directly. It
is created during initializa-
tion as process zero.

syncclock: synchro- | cron STIME invoker | invoker
nizes software and
hardware clocks

update: period- | /etc/rc none update | update | Invoked during system ini-
ically flushes system tialization, from /etc/rc.
buffers

walcher: inactivity | /etc/rc MAC_EXEMPT, invoker | invoker | Invoked during system ini-
timer DAC_EXEMPT, tialization, from /etc/re.

KILL, AUDITLOG

2.6.7 Remote Connections

Trusted XENIX provides a device driver?® for NSA approved STU-III cryptographic devices.?6 Trusted
XENIX has been designed to act as either a server (i.e., receive incoming connections) or a client (i.e.,
initiate outgoing connections). Such connections are constrained, however, inasmuch as connections can be
made only to dumb “ASCII” terminals or to other similarly configured Trusted XENIX systems.??

STU-III Device

Though no STU-III device was evaluated, it was necessary to derive a set of functions and assumptions about
the STU-III device against which the device driver could be evaluated. As such it is appropriate to describe
the general characteristics of a STU-III device, and to follow up with the identified list of assumptions for
this evaluation.

The STU-IIT provides clear voice conversations with regular telephones as well as a secure mode for cryp-
tographically protecting classified voice and data communications. In order to operate in this secure mode,

25 As mentioned earlier in this report, the phrase “device driver” is used, in this specific case, to refer to the serial device
driver and the trusted process that uses it to control a STU-III device.

26Note that though the device driver for the STU-III device is included in the TCSEC evaluation of Trusted XENIX, and
three specific STU-III devices have been included for the purpose of evaluating that device driver, no STU-III devices have been
included in the evaluated configuration. This is due solely to the fact that no STU-III device has been evaluated against the
TCSEC requirements, and cannot be assumed to meet those requirements.

27 These constraints are described in the Trusted Facility Manual.
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the STU-III devices must be initially loaded with their respective keys. During the first seconds of the
establishment of a secure call between two keyed STU-III’s, the devices will automatically generate a traffic
key for that call. This per-call traffic key is used to encrypt the information for the duration of that secure
call. As part of the generation of the per-call key, the two STU-III devices negotiate a clearance level for
the call. This clearance level is referred to as the negotiated key level and equals the highest common level
of the clearance levels associated with the initial keys loaded into the two STU-III devices. The STU-III
uses four clearance levels namely Unclassified, Confidential, Secret, and Top Secret. The STU-III does not
support categories.28

Though no STU-III devices were actually evaluated against the TCSEC, three AT&T STU-IIIs: the Secu-
rity Plus, the 1900 Secured Data Device, and the 1100 Secure Voice/Data Terminal were used during the
development and testing of the software. These STU-IIIs are the only ones considered during the evaluation
of Trusted XENIX version 4.0. Since the STU-III devices have not themselves been evaluated against the
TCSEC, it was necessary to clearly state the interface assumptions made about the devices.

The following list describes the assumptions?® that are being made about STU-III devices, in addition to
conformance with the interface specifications of any of the STU-IIIs identified above.

A connected pair of STU-III devices accurately determine the negotiated key (i.e., clearance) level.

The STU-III is capable of passing the far-end key identifier to the device driver in Trusted XENIX.

The communication security provided by the STU-IIIs is capable of preventing “playback” attacks.

The STU-III keys must be inserted before the STU-IIIs will communicate securely with each other.

Each STU-III can be uniquely identified by its key identifier.

The STU-IIT will not modify any data provided to it. Note that encryption is not considered modifi-

cation in this instance.

e The STU-IIT will cause the DCD pin (of its RS-232 connection to Trusted XENIX) to be asserted low
when the connection between the STU-III pair is broken.

e Only the predefined sequence “++4" can cause the STU-III to enter command mode.

e Once a key-level is negotiated by a pair of STU-IIIs, that level will not change for the duration of the
connection.

e The STU-IIT will correctly dial the number that is given it.

e The STU-III will cause the DCD pin to be asserted low when the connection between the STU-III pair
is broken or if the Asynchronous Secure State is exited, and to be asserted high when the STU-III is
in remote control mode or the STU-IIIs go secure.

o the keyword “ERROR” is sent to the DTE if a secure call fails.

Trusted XENIX Server Architecture:

The Trusted XENIX server architecture consists of an enhanced serial device driver and a set of trusted
processes.

Serial Device Driver and Disconnection: The Trusted XENIX serial driver originally (i.e., in versions
3.0 and earlier) signaled the terminal process group with a SIGHUP when it detected that the DCD had

28Note that Trusted XENIX represents a security level as a clearance followed by one or more categories. This difference is
addressed below.

29 Note that none of these assumptions have been validated by this evaluation.
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gone low, i.e., that the line had been dropped. When the process dies as a result of receiving this signal, init
will be notified that its child has died. init can then determine the reason the child died due to receiving a
SIGHUP. This signal would only be sent if the CLOCAL flag was off, thus allowing full modem control.

If the line between the STU-III and the server is dropped, all processes associated with the device special
file must be killed and init must be notified unless it occurs as a function of establishing the connection.
Since SIGHUP is a signal that can be caught by a user process, the driver was modified to send SIGKILL
instead. In addition, since CLOCAL could be set on by a user, which would cause the signal to not be sent,
a mechanism was established to tell the serial device driver to ignore the value of CLOCAL and send the
signal regardless of when DCD went low. This was handled via the creation of the SA_LNOCLOCAL ioctl
call. The SA_CLOCAL ioctl call was established to tell the serial driver to examine the value of CLOCAL
so as to undo the SA_NOCLOCAL ioctl call.

wnit issues a SA_CLOCAL call prior to executing the named TP. This is done so that when the DCD goes
low while the named TP is establishing a connection the serial driver will examine the CLOCAL flag to
determine whether or not to send the SIGKILL signal. After establishing the connection the stuziz trusted
process makes a SA_NOCLOCAL call so that all further instances of DCD going low will be handled correctly,
i.e., SIGKILL will be sent.

The SA_CLOCAL call should be issued only by privileged processes as it might cause the signal SIGKILL
to not be sent when DCD goes low. Therefore, the serial device driver will only allow the SA_.CLOCAL and
SA_NOCLOCAL calls to be made if the caller has PRIV_DEVICE.

In addition, in order to prevent a user from placing the STU-III in command mode, another ioctl, SA_CONTROL,
was designed and implemented which will direct the serial driver not to accept the STU-IIT command prompt,
which is “+++.” In reality the third “4” will be turned into a space character. So, once the STU-III’s
have entered Asynchronous On-Line state, Trusted XENIX won’t allow the STU-III server to be placed
in command mode. The stutiz trusted process will make this ioctl call prior to executing getty. The
SA_NOCONTROL ioctl command allows the escape sequence to be accepted by the serial driver. The
PRIV_DEVICE privilege is required in order to use the SA_LNOCONTROL and SA_.CONTROL command.

The Client STU-III software must ensure that untrusted processes do not have direct access to a STU-III
once a hangup occurs on that STU-III. SIGKILL is sent to those processes in the terminal group of the
STU-IIT’s serial line. However, a process may have an open file descriptor to a serial line and not be in the
line’s terminal group.

To prevent a process from being allowed to have access to a STU-III after the connection has gone away, the
SA_CTLSET and SA_.CTLGET commands were created. The SA_CTLSET command allows a privileged
process to request that it be notified by getting a specified signal whenever a hangup occurs on a specified
serial line. The SA_CTLGET command allows a process to retrieve a list of those devices for whom it has
previously called SA_LCTLSET and whether or not a hang-up has occurred on that line. In order for these
ioctl calls to function as intended the CLOCAL flag must not be set for the serial line. The serial driver will
only allow the SA_LCTLSET and SA_CTLGET ioctl calls to be made if the caller has PRIV_DEVICE.

Server Trusted Processes: The server architecture is designed around four trusted processes: init,
getty, login, and stuniz. In addition, a fifth trusted process, getprstate, was created to support this architec-
ture. Its function is to query the kernel to determine the state of the user process, i.e., USER_PROCESS,
TSH_PROCESS, etc., and return that information to the caller.
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init: init uses the /etc/ttys/file to determine whether the current serial device is a generic device (i.e.,
“ASCII” terminal) or not. If the device is generic, init immediately forks getty. If the device is not generic,
it determines the identity of the trusted process to invoke and any arguments that should be passed. init
then forks that trusted process instead of getty.

When a STU-IIT device is associated with a serial device port, the TSP will modify (per the TFM) the
/ete/ttys file to indicate that init should execute the stuiii trusted process, which will in turn execute getty
and so forth.

One of the arguments described in the /etc/ttys file indicates whether the device should be reinitialized upon
SAK entry. In the case of a STU-III, the argument is used so that a connection that is already established
is not re-initialized. The precise behavior and use of the argument in the /etc/ttys file depends upon the
terminal state.

If the terminal is in PROCESS_USER or PROCESS_TSH state when the SAK is invoked, nit kills all
processes associated with the terminal from which the SAK was invoked. Next, init forks and ezecs the
trusted shell. If the terminal is in any other state when the SAK is invoked, init determines whether to
simply invoke getty, which is the default, or a named trusted process. In the latter case, init will invoke the
named trusted process and will also pass on the parameter indicating that the device special file should not
be reinitialized.

If tnit is unable to execute getty or the special driver, this event is auditable.

As explained above, the CLOCAL flag associated with the serial driver must be on when the DCD goes low
during the establishment of a connection otherwise all associated processes would be killed. Therefore init
now issues a SA_LCLOCAL call prior to executing the named TP indicating that the CLOCAL flag should
be examined.

Users are prevented from sending out a SAK or “+44” by the stuziz Trusted Process making the SA_NOSAK
and SA_CONTROL ioctl calls. init puts the serial line back in a known state when it starts a new process
by making the SA_SAK and SA_LNOCONTROL ioctl calls.

stuiii: The stuiit process has three mandatory arguments and one optional argument passed to it by inzt.
sturiz will fail if any of the three mandatory arguments are incorrect, or missing. The three mandatory
arguments are port_name, getty_label, and stu_type. The port_-number indicates which device special file
to use when communicating with the STU-III device, the getty_label indicates which entry to use in the
Jete/gettydefs file, stu_type is the name of a supported STU-IIT device (currently attsecplus, att1100, or
att1900). If the optional argument “-n” is also passed, stuiii assumes a connection has already been estab-
lished and the user has invoked the Secure Attention Key (SAK). In this case, stuiiz will not reset the device
characteristics as that would cause the connection to be closed.

When stuiit is ezeced by init, the process must be in STATE_MAINT. If the process is not in this state the
program makes an entry in the auditlog, prints an error message to the console, and exits.

If the “-n” option was passed to stuiiz the noreset_flag is set to TRUE, otherwise the flag is set to be FALSE.
The remaining arguments are then checked for validity. If all of the arguments are valid, the value of the
noreset_flag is checked. If it is FALSE, a connection will be established between the two STU-III devices
and the negotiated key level will be obtained. The security level of the device special file will be set to the
negotiated key level. If it is TRUE, it can be assumed that a SAK was entered by the user to verify the login
prompt. In this case, it is not desirable for the STU-III to STU-III connection to be dropped and therefore
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the security level is obtained from the device special file, which was previously set by the last instantiation
of stuu.

When a call is received, the dialogue between the server STU-III device and stuiz is written to a temporary
file. stuiz obtains the negotiated key level of the STU-IIIs by reading the contents of the temporary file.
The file contains the near-end (server) and far-end (remote) key information that is used to determine the
negotiated key level. stuiiz verifies the negotiated key level by responding to the “Verify:” prompt from the
server STU-III device.

If stutzz and the STU-IIIs agree on the negotiated key level, the level is checked against the device special file’s
security range which is determined by its Terminal Maximum Level (TMaxL) and its Terminal minimum
Level (TminL). If the level is within the range, a Trusted XENIX security label is created, and the device
special file’s security level is set to this label. If the negotiated key level is not within the device special file’s
range, the event is audited and the program terminates which causes the STU-IIIs to hangup.

Finally, stuiiz executes getty by passing the security label via the new “-s” security label option.

getty: getty was modified (since version 3.0) to accept a new command line option, “-s”. The “s” option

is used to indicate that a security level follows. When called by stuiiz, the security level passed is the device
special file’s security level as established by stuiiz. getty is responsible for passing the security level to the

Trusted Process login by invoking login with a similar “-s” option.

login: The Trusted Process login was modified to accept a new command line option, “-s”. The “-s” option

is used to indicate that a security level follows.

If the new “-s” option is used, login will determine if the classification level passed falls within the device
special file’s range, and then the TminL and TMaxL from /etc/security/s_device. When the user3® enters a
classification level, or uses his/her default level, it is compared to the label passed by getty. The classification
levels must be equal or an error message is displayed and the user is re-prompted with the “level:” prompt.
The user may enter any category set that they have access to. The device special file level and process level
are then set equal to the classification level passed to login by getty and the category set entered by the user.

Trusted XENIX Client Architecture

At the highest level, the Trusted XENIX client architecture consists of an enhanced serial device driver,
some administrator controlled security tables, and a set of trusted processes that monitor the connections,
initiates connections, establishes a trusted path with the server, and terminates connections.

Serial Device Driver and Trusted Path: The Trusted XENIX STU-III software packages were designed
to allow a user on a client machine to obtain a trusted path to the Server Trusted XENIX system. The
trusted path is invoked by the user pressing the Secure Attention Key (SAK) or two Control Z’s in quick
succession. The serial device driver line discipline is responsible for trapping the SAK and killing all of the
processes associated with the user’s terminal. init is the parent of these processes and will be notified of

30Note that in the case where a user on a remote Trusted XENIX machine, as opposed to an “ASCII” terminal, is making a
connection, the remote Trusted XENIX is actually responding to these user prompts rather than the actual user.
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their death. init then determines whether the user was currently logged in or not and acts appropriately. If
the user has already been logged in, init will execute the Trusted Shell. (If the user had not logged in, init
will restart the getty-login sequence.) When the Trusted Shell on the Server Trusted XENIX System has
been executed and is communicating with the Client Trusted XENIX System, the software on the client side
must be trusted. Thus, an untrusted program must not be able to initiate or communicate with the server’s

Trusted Shell.

For this reason, a new ioctl call, SA_LNOSAK, was created to prevent two consecutive Control Z’s from being
sent out to an open serial device from the user’s current terminal. The server-conn process will make the
SA_NOSAK ioctl call prior to invoking an untrusted terminal emulator.

Since the Client STU-III software still needs to initiate a Trusted Shell on the Server Trusted XENIX System,
another ioctl call, SA_SAK, was created to reverse the effects of the SA_LNOSAK ioctl call thereby allowing a
process to send consecutive Control Z’s. In order for a user to invoke the Trusted Shell on the Server Trusted
XENIX system the user must enter the SAK to obtain a Trusted Shell on the Client Trusted XENIX system
where he/she can select the client-tpath process. This command will make the SA_SAK ioctl call and then
invoke the Trusted Shell on the server system.

Both 1octl calls can be invoked only by processes having the PRIV_DEVICE privilege.

Security Tables: There are three security tables to maintain client/server-related configuration data.
The emulation file /etc/security/stu/s_stuem contains the aliases and full path names of allowed terminal
emulation programs.3! The server file /etc/security/stu/s_stusrv will contain the aliases, phone numbers,
keyids, baud rates, and the list of devices that are associated with each server. The /etc/security/stu/stuimp
file maintains information on current STU-III sessions, communication about connection initialization and
shutdown, and which connections can go into or are in trusted path. This information allows the Client
STU-III programs to access the proper STU-III session when the user resumes their session.

The SSA will populate the first two of these configuration files used by the Client STU-III software and will
use the c_zaptable trusted process to modify them in the same manner that other security tables are handled.

c_zaptable provides the ability to display, edit, add, and invalidate table entries. Each table has set of
modules associated with it that provide the ability to manipulate entries in that particular table. These
modules provide the ability to delete an entry instead of invalidating it.

Unlike the other two files, /etc/security/stu/stutmp is maintained by the TCB without SSA intervention.
server-conn creates a new entry in /etc/security/stu/stutmp for the connection when it is first established.
If no entry exists for the user’s terminal, then a new entry is created. If an entry does exist for that terminal,
then it is updated. However, it is only updated if the entry is in the disconnected state. Each of the
programs in the Client STU-IIT Package will reference this file upon entry to ensure that the connection is
in the expected state before continuing execution.

When either establishing a trusted path to the server system, reconnecting to a session, or disconnecting a
session, the uid, gid, label, and login terminal are checked to ensure that the user may use the session.

Client Trusted Processes: Four trusted processes, shaded in figure 2.2, were designed to run on a
client machine: server-conn, client-tpath, client_daemon, and disconnector. connector, client-tpath and

31Note, however, that though the list of allowed emulators is maintained in the TCB, the emulators are untrusted.
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disconnector can be accessed by the user via the Trusted Shell. The client_daemon doesn’t provide a user
interface and is invoked at boot time by /etc/rc. The trusted mini terminal emulator, in figure 2.2, is not
really a process, but is rather an extension of client-tpath that echoes information coming from the server so
that the user can interpret the remote trusted shell.

server-conn: The server-conn process is used on the Client Trusted XENIX System to initiate a connection
or to reconnect to a current login session to the Server Trusted XENIX System.

When establishing a connection between the Client Trusted XENIX System and the Server Trusted XENIX
System, the following steps are followed. The user is prompted for the name of the Server Trusted XENIX
System they wish to connect to and the name of a terminal emulator they wish to use. If the user cannot give
a valid server name or terminal emulator (i.e., they must exist in the s_stusrv and s_stuem files, respectively),
they are provided the option of terminating the process.

If the user has given valid names, server-conn changes the state of the connection from STATE_DISCONNECT
to STMP_SPAWN and sends a signal to client_daemon indicating that it should open a file descriptor for
the device special file being used.

The modem device file is initialized such that it is in a known configuration state for input/output processing.
Attributes such as the baud rate and data bits used are set. The phone number of the server is dialed and a
secure data call is initiated between the Client and Server Trusted XENIX Systems. If the secure connection
is successfully established, the user’s login name, group name, and Current Process Level (CPL) are sent in
response to the server’s AT login: prompt. The user is then prompted to enter their password. The user’s
password is entered only when prompted by the Server Trusted XENIX System and is not stored on the
Client Trusted XENIX System.

The user is given three attempts to log in to the Server Trusted XENIX System before server-conn executes
the disconnector process to clean up the failed login attempt. If the login attempt is successful, the owner,
group, and security level of the device special file are changed to reflect the current process and the termi-
nal emulator is forked and exec’ed. The state of the connection is then changed from STMP_SPAWN to
STATE.CONNECT.

If the connection cannot be established or the user exits the terminal emulator, the disconnector process is
executed to clean up the stutmp table entry and to signal the client_daemon to close the connection, changing

the state to STATE_DISCONNECT.

server-conn has the ability to catch the SIGSAK signal. If the user enters the SAK while using the terminal
emulator server-conn will respond by changing the owner and group of the device special file to root and the
security level of the device special file to unclassified/none/. server-conn will then call vhangup(), which will
remove read and write access to the modem device file for any process that has an open file descriptor to it.
These actions will prevent users from accessing the modem device lines other than by our trusted processes.

The server-conn process also reconnects a user to the Server Trusted XENIX System which they had previ-
ously connected to. Since the communication link between the Client and Server Trusted XENIX Systems is
maintained when a SAK is hit, server-conn doesn’t have to re-initiate the call to the Server Trusted XENIX
System. However, the user’s id, group id, and CPL are matched against those of the existing connection
before the terminal emulator is restarted.

Note that server-conn has to change the owner, group and security level of the device special file to reflect
the current process when being called for reconnection purposes.
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client-tpath: The client-tpath process is used on the client system to provide a trusted path to the TCB
on the server system. It is a new trusted process and is available only through the Trusted Shell on the client
system.

Upon invocation, client-tpath will issue the SA_SAK ioctl call and then send the Secure Attention Key (SAK)
to the STU-IIT modem to initiate a Trusted Shell on the server. This must be done by a process since directly
invoking the SAK on the client system from the command line will only start up a Trusted Shell on the
client. After the SAK is sent, client-tpath issues SA_NOSAK and performs terminal emulation to allow the
user to communicate with the server’s Trusted Shell. Only minimal emulation is performed; terminal input
is passed to the modem and modem input is passed to the terminal.

Very little processing is performed on the I/O to and from the server system. The terminal input is scanned
for two consecutive occurrences of the Server Trusted-path End Key (STEK). This character is currently
defined as a control-A. Entering the STEK signifies that the user wants to exit the client-tpath process.
The Trusted Shell on the server must then also be exited and the login shell restarted. client-tpath sends
the SAK and the control-D character to the server. The SAK brings the server connection to the initial
entry point of the Trusted Shell and the control-D causes the Trusted Shell to exit and a login shell to be
reinvoked on the server. After sending the SAK and control-D, client-tpath determines whether or not the
Server machine has indeed exited the Trusted Shell by issuing the getprstate trusted process call on the
Server machine. getprstate will actually be called up to five times. If after five attempts the Server machine
remains in TSH_STATE, client-tpath will exec disconnector to close the connection.

disconnector: The disconnector process may be called by a user from the Trusted Shell menu, the server-
conn process, or client-tpath process to disconnect a STU-III connection.

The disconnector performs some checks (e.g., the disconnecting user made the current connection) to
make sure the user is allowed to disconnect, makes the necessary state change, and sends a signal to the
client_daemon to perform the actual hangup.

client_daemon: The client_daemon process is used on the client system to perform run-time initialization
and to manage the connections to server systems. This module is not executed under the Trusted Shell, but
is started by /etc/rc on system initialization.

When started, client_daemon will clear the /etc/security/stu/stutmp file by truncating it and then write its
process identification (pid) to a known file so that the server-conn and disconnector processes may send a
signal to it.

When a connection is initiated, server-conn sends a signal to client_daemon to inform it that a new connection
is being created. Upon receiving this signal, client_daemon opens a connection to the proper modem device
file. client_.daemon holds an an open file descriptor to the device in order to prevent the connection from
being killed when the user enters a SAK on the Client machine. The user will need to enter SAK on the
Client machine in order to execute any of the Trusted Processes associated with the STU-III Client Software.
The proper modem device file is found by searching the /etc/security/stu/stutmp file for a stutmp entry in
a “spawn” state.

When the disconnector process is invoked it sends a signal to client_daemon. This causes client_daemon to
close its file descriptor to the proper modem device file. Since the file descriptor held by client_daemon is the
only remaining descriptor to the modem device file, all final connection closing actions will then be taken by
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the kernel. It also changes the ownership and group of the modem device file to root, as well as setting the
security label of the modem device file to low/none/. The proper modem device file is found by searching
the /etc/security/stu/stutmp file for a stutmp entry in a “zombie” state.

When the daemon traps signals sent by either the server-conn or disconnector processes it runs a signal
handler routine. This routine ignores all signals and locks the stutmp file. It scans the entire stutmp file for
modem device files in state “spawn” or “zombie.” Because the daemon locks the stutmp file, the server-conn
and disconnector processes will block waiting to update the stutmp file before signaling the daemon. When
the daemon has finished scanning the stutmp file, it unlocks the file and resets the signal to use the handler
routine on the next interrupt.

Finally, client_daemon must keep track of all user logouts from the client system to ensure that a user does
not leave an open connection when they log out. The /etc/utmp file is periodically scanned to look for a
utmp entry that has changed since the file was last scanned. The utmp file lists the current users on the
system. Records of the following types are examined during scanning: INIT_PROCESS, LOGIN_PROCESS,
USER_PROCESS, TSH_.PROCESS, and DEAD_PROCESS. If a utmp entry of type USER_PROCESS or
TSH_PROCESS changes to one of the other types without closing its open STU-III connections, then
client_daemon will close the connection and reset the stutmp state for that connection to DISCONNECT.
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2.7 TCB Protected Resources

Trusted XENIX supports a rich set of objects. The objects supported are ordinary files, directories, System
V semaphores, XENIX semaphores, special files, named pipes, unnamed pipes, System V message queues,
XENIX shared data segments, System V shared memory segments, and processes. Processes are the only
subjects in Trusted XENIX.

2.7.1 Subjects

In Trusted XENIX as in other UNIX systems, the existence of a process is implied by the existence of
a non-null proc structure entry in the process (proc) table. The proc structure is permanently resident
in main memory and is never swapped out. The proc structure contains process attributes including the
security label of the process, its identity (uid and gid, described below), its parent process ID, and its status.
Finally, each process has an address space. The address space includes a user portion, which is initialized
from the process’ program file and may be replaced or changed in size by the ezec and sbrk system calls, and
may be directly accessed by ordinary user-mode programs. The address space also includes a kernel portion,
which is fixed in size, and directly accessible only from within the kernel. Part of the kernel portion is shared
by all other processes (kernel code and system-wide kernel data). The other part is accessible only to the
owning process, and contains process context (the u_area), the definition of the process’ address space, and
the process’ kernel stack. Process attributes stored within the u_area include a record of system resources
held by the process: open files, shared segments in use, semaphores, etc.

The term “uid” refers to the numeric value corresponding to a “User Name” specified by a user at log in
time. An analogous relationship is defined between “gid” and “Group Name.” Users can be members of a
number of groups, although operate in only one group at a time. The system’s internal view is always that
of uid and gid. The correspondences are stored in the files /etc/passwd (for uid) and /etc/group (for gid).

Each process has a real uid and effective uid associated with it as well as real and effective gids. These IDs
are stored in the process’ u_area and proc table entries. Since the effective uid can be different in these two
locations, the effective uid in the u_area is referred to as the effective uid, and the effective uid in the proc
table entry is referred to as the saved uid.

The real uid of nonprivileged processes is always derived from the User ID of the user currently executing the
process. Only a process with SETUID privilege can change its real uid. The effective uid can be changed with
the setuid system call, although only a SETUID privileged process can change its effective uid to something
other than its real uid (obtained from the getuid system call) or saved uid (obtained from the geteuid system
call). A process which executes a program with the setuid permission bit set has its effective uid set to the
owner ID of the program file. This can be reset to the saved uid via setutd. The uid used in Discretionary
Access Control checks is the effective uid.

Each process has three GPM vectors associated with it: the current, the previous, and the effective. The
current GPM vector contains all the privileges that the process is entitled to acquire (i.e., those privileges a
program is “installed” with). The effective GPM vector is the GPM vector containing the privileges currently
set for the process. The previous GPM vector of a process is a copy of the effective GPM vector of the invoker
(another process) of the process at the time of invocation. The current and effective GPM vectors are the
same at process creation and diverge as the use of privilege bracketing (see section 2.8.3, page 71) alters the
effective GPM vector. The GPM vectors associated with a process are located within the process’ u_area
(accessible only to the kernel).

54
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
2.7. TCB PROTECTED RESOURCES

In addition, processes have the following capabilities: a process can create another process (fork), overlay
itself with an executable file (ezec), and send a signal (kill) to destroy another process (assuming other
constraints on this capability allow it, i.e., MAC and the special constraints on signaling). A process may
acquire and possess system resources of various kinds such as memory and CPU time.

Process Creation and Modification

When invoked, the fork system call creates a process (known as the child) that is the exact duplicate of the
“parent” (invoker of fork) except for the following:

e The return values to the parent and child are different. The value of the child’s process ID is returned
in the parent process and the value zero is returned in the child process.

e The child process has a unique process ID.

e The child process has a different parent process ID.

e The child process has its own copy of the parent’s file descriptors. Each descriptor shares a common
file pointer with the corresponding file descriptor of the parent.

e The child process’ resource usage values (utime, stime, cutime, and cstime) are set to zero.

e The child process’ semadj values (used to restore semaphore value after abnormal process termination)
values are cleared.

Trusted XENIX will allocate primary or swap space memory for the new process and make an entry for the
child process in the proc table. The brkctl system call is used to allocate or deallocate memory segments,
and the brk system call is used to change the size of data segments. The lock system call locks a process in
memory (text and data segments). Processes or process groups can be manipulated with the proctl system
call as follows. This system call will allow a process that is greater than the swapper size to execute, will
allocate contiguous memory and then deallocate it. Without PROCTL privilege, processes can invoke this
system call to affect only those processes whose real or effective uid is equal to the real or effective uid of
the invoker (except for process 0 and process 1), and whose security levels are greater than or equal to the
security level of the invoker.

The ezec system call transforms the calling process by overlaying it with the executable file (known as the
“new process file”) specified in the ezec call. The namei routine, which does pathname resolution, is called
to get the inode of the executable file for DAC and MAC permission checks, and the file table is searched to
check that a file open for writing is not being ezeced. When a process issues an ezec, a new stack is allocated
and overlaid on the old stack and a new executable file is overlaid on the user address space. File descriptors
open in the calling process remain open in the transformed process, except for those whose close-on-exec
flag 1s set. If the setuid mode bit of the new process file is set, ezec sets the effective uid of the transformed
process to the owner ID of the new process file. Similarly, if the setgid mode bit of the new process file is
set, the effective gid of the transformed process is set to the gid of the new process file. The real uid and
real gid of the transformed process remain the same as those of the calling process. The transformed process
also retains the following attributes from the calling process: pid, parent pid, semadj values, signal values
(e.g., whether to ignore or terminate3?), and process security level. The effective and maximum privilege
vectors are both computed as the bitwise “or” of the effective privilege vector of the calling process and
the privilege vector of the ezeced file. The transformed process cannot be traced by any process with less
privilege. Various forms of ezec (e.g., ezecl, execv, execlp, execvp, ezecve) are available to a programmer. The

32However signals set to be caught by the calling process are set to terminate the transformed process.
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basic difference lies in parameter specification; all are implemented as calls to ezecve, which is the actual
kernel routine.

All processes, except for process 0, are created only through the execution of a fork system call by some
other process. Process 0 is a special process (created by the boot routines) which, in turn, creates a child
process known as process 1 or the init process. Process 0 then becomes the kernel’s swapper routine, while
the init process becomes the ancestor of every other process in the system. init clears all console display
memory between console log ins via toctl. The device drivers also clear all their physical memory areas. init
also does a chmod 600 for the terminal so that other processes cannot write to a login prompt screen. For
each terminal in the system, the init process forks a copy of itself which in turn will invoke the getty TP
(which will acquire the user’s terminal characteristics and save them in the /etc/utmp file which contains
one entry for each terminal in the system) and the login TP to perform user log in.

User Log in

The user is logged in by the TP login, which first invokes the password routine which authenticates the
user. Immediately following successful identification and authentication, login checks to ensure that the User
Maximum Level (UML) dominates the Terminal Minimum Level (TMinL). login then asks the user to specify
the desired group and security access level. [ogin ensures that the user is a member of the specified group
and that the Group Maximum Level (GML) dominates the TMinL. If the user does not specify the group
and/or security level then the appropriate default values are used for the item not specified (previously set
by the SSA in /etc/security/s_user). The security level entered by the user (or the default as appropriate) is
compared to the UML, the GML, and the Terminal Maximum Level (TMaxL). If the requested level exceeds
any one of these levels or is not greater than the TMinL, then an error message is printed and the prompt
reissued. Upon successful completion of these checks, login will set the Current Process Level (CPL) to the
requested security level, or the default security level if none was specified. login will make the necessary
entries into the /etc/utmp file to show that the terminal is now connected to the user process and set the
terminal level to the CPL by modifying the inode of the terminal’s special file. Finally, login ezecs the user’s
shell to set up the user’s initial environment.

This process changes slightly when the user is logging via a STU-III device connection (see section 2.6.7,
page 44, and more specifically section 2.6.7, page 45). The essential difference is that in addition to the
checks described above, the user’s requested clearance level must be equal to the STU-III negotiated key
level as provided by the STU-III trusted process from the STU-III device itself. The user’s category set,
however, is not related to the negotiated key level and is subject only to the conditions described above.

Process Termination

When the user process is terminated (i.e., logout) the process manager notifies the init process (process 1)
of the death of its descendant at which time init forks another copy of itself (which, in turn, invokes getty)
to the terminal to await the next user.

When a process is terminated (via ezit or receipt of signal) the following actions occur. All open file
descriptors are closed, each shared memory segment is detached, outstanding semaphore operations left by
the terminating process are closed, and all locks (process, text or data) are unlocked. If the terminating
process is a process group leader, the SIGHUP signal is sent to all processes in the process group. init
becomes the parent of the terminating process’ children. If the parent of the terminating process is waiting
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on an event, it is notified of the termination. If the parent is not waiting, the terminating process is turned
into a “zombie” process (occupies a slot in the process table but has no user or kernel space available to it).
Zombie processes are removed from the process table when their parents exit.

With regard to STU-IIT device connections, the server end of the connection is handled pretty much as
described above. However, the client_daemon (see section 2.6.7, page 48) on the client end of the connection
is responsible for breaking the STU-III connection when it senses that a connected process has terminated.

2.7.2 Objects

The objects in Trusted XENIX can be divided into two broad classes: those objects with a file system
representation and those without. Objects with a file system representation share a common access decision
mechanism and use the same data structures and code to implement access control. Access is granted based
on the permission bits, ACLs (if present), and security label stored in the inode. When the inode is brought
into main memory (into the inode table), extra information about the dynamic access attributes is included
in the in-core inode copy. For those objects without a file system representation, a special TCB data structure
with its own access control information (e.g., permission bits and ACLs) is used. The objects of Trusted
XENIX are listed in table 2.4 to show which are file system objects and which are not.

| Trusted XENIX Objects |

File System Non File System
Ordinary Files System V Semaphores
Directories System V Message Queues
XENIX Semaphores System V Shared Memory Segments
Special Files Processes

Named Pipes
XENIX Shared Data Segments
Unnamed Pipes

Table 2.4. Trusted XENIX Objects

Object Descriptions

The access control information for file system objects is stored in the object’s inode. In addition to complying
with the security policy enforced for the object type, a process must also have search access to each directory
named in the path to the object. The access control information for non-file system objects is stored in
special TCB data structures specific to the object type.

Each of the following subsections briefly describes the object type, modes of access allowed to that object
type, and the conditions necessary to exercise each access mode.

Each of the object type descriptions includes a brief discussion of the conditions necessary to exercise each
mode of access defined for the object type. The notation used for these discussions is as follows: “SL(process)”
represents the mandatory security level of the subject, “SL(<object type>)” represents the mandatory
security level of the object specified, “>” represents “dominates”, “<” represents “is dominated by”, and

“=" represents “equals” (for a more detailed description of the “dominates” relation see page 70). In each of
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Access Type Comment
read (r) A process may exercise read access if and only if:

1. the effective discretionary access mode includes

(lr” and

2. SL(process) > SL(file)

A process granted read access can execute system calls
that cause data to be fetched (read) from the file.
write (w) A process may exercise write access if and only if:

1. the effective discretionary access mode includes

(4W77 a,nd

2. SL(process) = SL(file)

A process granted write access can execute system calls
that cause existing data in the file to be modified or
new data be appended to the file.

execute (X) A process may exercise execute access if and only if:

1. the effective discretionary access mode includes

((X” and

2. SL(process) > SL(file)

A process granted execute access can cause the pro-
gram to be loaded and executed or the shell script to
be forked and executed.

null (-) A process cannot access the file in any way.

Table 2.5. File Access Rules

the following descriptions the “effective discretionary access mode” refers to the result of the discretionary
access control check as described in section 2.8.1 on page 67. Access modes not specified for a particular
object type have no effect on the access calculation.

Ordinary Files (table 2.5): Files are the primary information containers for the system. They are repre-
sented by an inode. Essentially a file is a device inode-number pair. The name of the file and the inode are
both stored in a directory, forming an entry for that file. Each file consists of zero or more disk blocks, which
are either direct (that this, they contain data) or indirect (they point to disk blocks which may contain data,
or more pointers).

Directories (table 2.6): Directories are the filesystem data structure responsible for providing the tree
structure for the filesystem. Directories contain a mapping of file name component to inode number. Each
directory is responsible for providing the inode number of each object immediately subordinate to it. By
consulting this mapping at each step along the path to a file, the kernel is able to translate full pathnames
into the proper inode number of the desired object.
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Directory entries are known as links. Each link provides a name-to-inode number mapping for only one
object; however, a single filesystem object may have many links that “point” to it, thus allowing more than
one pathname to describe an object.

For most file system objects, the mandatory access compatibility rule3® requires that the security level of
the object is always equal to the security level of the containing directory. Directories are the primary
exception to this rule in that the security level of a directory need only dominate the security level of the
containing directory. An “upgraded directory” is a directory with a security level that is higher than the
security level of the containing directory. The TCB ensures that a directory’s label dominates the label of
its parent directory. Thus, as one traverses a path from the root to an object, the labels are monotonically
non-decreasing.

System V Semaphores (table 2.7): System V semaphores are objects that are used to implement a process
synchronization mechanism. System V semaphores can take any integer value. System V semaphores are
not part of the file system, but rather are managed completely as an internal TCB data structure. This
internal data structure has a component much like an inode that contains the access control information
associated with the semaphore. Semaphore control structures and data are stored within the kernel’s data
segment. The kernel maintains a fixed size table for semaphore control information.

System V semaphores are actually semaphore sets which can accept a list of semaphore operations. Each
set of operations is performed atomically; that is, the entire operation set is performed together. If one
operation of the set causes the calling process to sleep, then all previous operations in the set are undone
and restarted from the beginning when the process reawakens. Semaphore sets are created via the semget
system call. semget returns a set id which is used to identify the set for semaphore operations. Semaphore
sets that are to be long-lived and publically known can be created using a user specified key value. The
number of semaphores in the set is specified when the set is created.

Synchronization is accomplished via the semop system call. The inputs to semop are the ID of the semaphore
set to use, a list of semaphore operations, and a count of the number of operations in the list. Each operation
specifies which semaphore in the set to operate on, the operation to be performed, and flags to control how
the operation is performed.

XENIX Semaphores (table 2.8): XENIX semaphores provide a mechanism similar to the System V
semaphores. XENIX semaphores differ from System V semaphores in that XENIX semaphores can take
values of zero or one only, and XENIX semaphores are part of the file system. XENIX semaphores are
implemented directly in their corresponding inodes. The inode, marked internally as a semaphore, points to
a zero length file.

A XENIX semaphore is created via the creatsem system call using the file system name space to name the
semaphore. Any process wishing to synchronize using this semaphore accesses it via the opensem system call.
Both creatsem and opensem allocate file descriptors for semaphores. This system call returns a semaphore id
which is then supplied to the synchronization calls, sigsem and waitsem. The synchronization calls are both
atomic operations; an operation on a given semaphore cannot begin until any other operation in progress
completes.

Special Files (table 2.9): Special files are used to represent devices and can be manipulated by user
processes in exactly the same manner as files. There are two general classes of 1/O devices: block devices and
character devices. Block devices correspond to secondary storage devices such as hard disks, diskettes, and

33The “compatibility rule” is described in detail on page 25 of Secure Computer Systems: Unified Exposition and Multics
Interpretation [BELLY].
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Access Type

Comment

read (r)

A process may exercise read access if and only if:

1. the effective discretionary access mode includes

“I’” and

2. SL(process) > SL(directory)

A process granted read access to a directory can as-
certain the name of any entry in the directory.

modifyentry (w)

A process may exercise modifyentry access if and only

if:

1. the effective discretionary access mode includes

(ﬁW” a,nd

2. SL(process) = SL(directory)

A process granted modifyentry access to a directory
can cause current entries to be unlinked (removed) or
new entries to be linked (added).

search (x)

A process may exercise search access if and only if:

1. the effective discretionary access mode includes

“X” and

2. SL(process) > SL(directory)

A process granted search access to a directory can use
that directory’s name in a pathname. In addition, the
attributes of file system objects (e.g., date and time of
last change, protection characteristics, etc.) in that di-
rectory are available to a process granted search access
to the directory provided SL(process) > SL(file).

null (-)

A process granted null access to a directory cannot
access the directory in any way.
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Access Type Comment

observe (r) A process may exercise observe access if and only if:

1. the effective discretionary access mode includes
(ﬁr” a,nd

2. SL(process) = SL(semaphore)

A process granted observe access to a System V
semaphore may examine the value of the System V
semaphore.

read/write (rw) | A process may exercise read/write access if and only

if:

. the effective discretionary access mode includes
1. the effect d t d lud
both “r” and “w” modes and

2. SL(process) = SL(semaphore)

A process granted read/write access to a System V
semaphore may examine and/or alter the value of the
System V semaphore.

null (-) A process granted null access to a semaphore cannot
access the semaphore in any way.

Table 2.7. System V Semaphore Access Rules

Access Type Comment

read/write (r) | A process may exercise read/write access if and only

if:

1. the effective discretionary access mode includes
(ﬁr” a,nd

2. SL(process) = SL(semaphore)

A process granted read/write access to a XENIX
semaphore may examine and/or alter the value of the
XENIX semaphore.

null (-) A process granted null access to a XENIX semaphore
cannot access it in any way.

Table 2.8. XENIX Semaphore Access Rules
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Access Type Comment
read (r) A process may exercise read access if and only if:

1. the effective discretionary access mode includes

(lr” and

2. SL(process) = SL(special file)

A process granted read access to a special file may
open the file for read.
write (w) A process may exercise write access if and only if:

1. the effective discretionary access mode includes

(4W77 a,nd

2. SL(process) = SL(special file)

A process granted write access may open the file for
write.

null (-) A process granted null access to a special file may not
access the device represented by that special file in any
way.

Table 2.9. Special File Access Rules

tapes. These devices must have fixed size blocks which are directly addressable. Non-block devices (display,
printer, keyboard) are implemented as character devices. Device drivers are represented by entries in the
block or character switch array (bdevsw or cdevsw), and define operations for the special files (e.g., read,
write). Operations on these two types of special files translate into physical operations on the corresponding
devices.

For special files that represent single-level devices, the level of the special file as recorded by the file system is
used. For special files that represent multi-level devices, discretionary access to the special file is restricted to
the trusted process that is responsible for manipulating the device and controlling its sensitivity level. The
trusted process is then responsible for all mandatory access control on the device and manages the labels in
a manner best suited for the device in question.

In addition, special files have a defined maximum security level and minimum security level. The maximum
security level must dominate the minimum security level. No device is ever allowed to operate outside the
range of security levels specified by its maximum and minimum security levels.

The only exceptions to this are the special devices /dev/tty and /dev/null. The pseudo terminal device
(/dev/tty) is used by processes executing the open system call without knowing the real name. When a
process attempts to open /dev/tty, the kernel redirects the open to the user’s actual terminal. In order for

the initial open to succeed, /dev/ity has the WILDCARD label. The null file, /dev/null, also has the wildcard

label. This is acceptable since writes to it are discarded, and reads from it always return an end-of-file.

Named Pipes (table 2.10): Named pipes are used as communication buffers between two processes. Named
pipes provide an inter-process communication facility that manages messages in a first-in, first-out manner.
Their implementation allows processes to communicate even though they do not know what processes are on
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Access Type Comment
read (r) A process may exercise read access if and only if:

1. the effective discretionary access mode includes

(lr” and

2. SL(process) = SL(named pipe)

A process granted read access to a named pipe may
extract the oldest information in the named pipe. Ex-
tracting the information deletes it from the named
pipe.

write (w) A process may exercise write access if and only if:

1. the effective discretionary access mode includes

(4W77 a,nd

2. SL(process) = SL(named pipe)

A process granted write access to a named pipe can
only append information to the named pipe.

null (-) A process with null access to a named pipe cannot

access the named pipe in any way.

Table 2.10. Named Pipe Access Rules

the other end of the pipe. Pipes are implemented using the filesystem for data storage. The kernel assigns
an inode and a directory entry for named pipes, as for other files.

Processes use the mknod system call to create named pipes and the open system call to open named pipes.
Once open, processes use the regular system calls for files (e.g., read, write and close) when manipulating
named pipes.

Unnamed Pipes: Unnamed pipes provide an inter-process communication facility like named pipes. Un-
named pipes do not have names in the file system; however, they do use the file system data structures (e.g.,
inode). Unnamed pipes are used as communication buffers between a child process and its parent process.

Unnamed pipes, unlike named pipes, are transient; when all processes finish using the pipe, the system
reclaims its inode. Processes use the pipe system call to create an unnamed pipe. The system call returns
two opened file descriptors, one opened for reading and one opened for writing (unlike named pipes which
do not do the opening as part of creation), and creates the corresponding file table entries for the pipe. /O
to unnamed pipes is always synchronous. If the pipe is full of data, a write request will block the requesting
process until another process reads sufficient data from the pipe. A read from an empty pipe blocks the
requesting process.

Since unnamed pipes can be shared only between a child process and its parent process and only if passed
on to the child from the parent as part of the process context duplicated when the child is forked, no other
access control is enforced.

System V Message Queues (table 2.11): System V message queues are containers for messages. They
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Access Type Comment
read (r) A process may exercise read access if and only if:

1. the effective discretionary access mode includes

(lr” and

2. SL(process) = SL(message queue)

A process granted read access to a System V message
queue may extract the oldest message from the System
V message queue. Extracting the message deletes it.
write (w) A process may exercise write access if and only if:

1. the effective discretionary access mode includes

(4W77 a,nd

2. SL(process) = SL(message queue)

A process granted write access to a System V message
queue may only add messages to the System V message
queue.

null (-) A process granted null access to a System V message
queue cannot access the System V message queue in
any way.

Table 2.11. System V Message Queue Access Rules

allow processes to exchange data in units of messages, collections of data of a specific size, rather than the
unstructured stream of data provided by pipes. System V message queues are primarily used to hold requests
to server processes. Each message in a queue has an attribute named type. This allows the receiver to choose
the messages it receives (or order of messages to receive, etc). Usually the type will signify whether the
message is from the client to the server or from the server to the client (two channels would be necessary for
this bi-directional communication using pipes).

Message queues are created via the msgget system call, which takes a user specified key value and returns a
queue id to be used for later queue operations. Messages are sent to a queue via msgsnd and retrieved via
msgrcv. Unlike pipes, processes can write to a message queue even if there is no process waiting for message
entry on the queue. Processes may request message queue operations to be synchronous or asynchronous
(i.e., can block until the request can be satisfied or can be notified that the operation failed).

System V message queues have no file system representation and are completely managed by memory resident
tables available to the TCB. Message queue control structures and message data are stored within the kernel’s
data segment. The fixed sized tables used within the kernel do, however, mimic the file system DAC policy by
providing a capability to specify protection bits or an ACL for the System V message queue. The protection
bits or the pointer to the ACL is kept in the table. Part of the memory-resident table is the label for the
System V message queue. That label is used for all MAC decisions concerning the message queue.

XENIX and System V Shared Memory Segments

Two shared memory mechanisms are provided: XENIX Shared Data and UNIX System V Shared Memory.
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Access Type Comment
read (r) A process may exercise read access if and only if:

1. the effective discretionary access mode includes

(lr” and

2. SL(process) = SL(shared segment)

A process granted read access to a shared segment may
examine the shared segment.
write (w) A process may exercise write access if and only if:

1. the effective discretionary access mode includes

(4W77 a,nd

2. SL(process) = SL(shared segment)

A process granted write access to a shared segment
may alter the contents of the shared segment by adding
new data to the segment or by altering the existing
data.

null (-) A process granted null access to a shared segment can-
not access the shared segment in any way.

Table 2.12. XENIX Shared Data Segment Access Rules

Both mechanisms support interprocess communication via segments of common memory that can be mapped
into the address spaces of multiple processes. The key advantage here is the reduction in overhead of multiple
copies normally necessary to handle asynchronous reading and writing of the file by different processes, which
relieves the kernel from responsibility for managing data structures and acting as intermediary between
process and data (as is the case for pipes and message queues).

The actual shared segment is reached by inodes for both types (as explained below) of segment. The
segment’s data structure includes a permission structure, size, usage information, etc., and is also pointed
to by the TCB’s shared data table. The process table maintains a list of shared memory control blocks for
each process with shared segments attached. Each control block contains the inode pointer, start address,
dynamic permission flags, and a pointer to the next control block for the associated process.

XENIX Shared Data Segments (table 2.12): The sdget system call creates a XENIX shared data segment,
or attaches an existing segment to the calling process. The segment is identified by a path name in the file
name space. The sdfree system call removes a XENIX shared data segment from the calling process’ address
space. When the last process detaches from a segment, the segment is destroyed.

XENIX Shared Data Segments also support system calls (sdgetv and sdwaitv) to synchronize cooperating
processes using shared data segments. Therefore the security policy mandates read- and write-same.

System V Shared Memory Segments (table 2.13): The system calls for System V shared memory have
the same form as those for message queues and System V semaphores, where user supplied keys are specified,
rather than the XENIX Shared Data Segment interface which uses filesystem supplied inodes. shmget creates
System V shared memory segments with segment ids or user specified key values. The system calls shmat

65
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
CHAPTER 2. SYSTEM OVERVIEW

Access Type Comment
read (r) A process may exercise read access if and only if:

1. the effective discretionary access mode includes

(lr” and

2. SL(process) > SL(shared segment)

A process granted read access to a shared segment may
examine the shared segment.
write (w) A process may exercise write access if and only if:

1. the effective discretionary access mode includes

(4W77 a,nd

2. SL(process) = SL(shared segment)

A process granted write access to a shared segment
may alter the contents of the shared segment by adding
new data to the segment or by altering the existing
data.

null (-) A process granted null access to a shared segment can-
not access the shared segment in any way.

Table 2.13. System V Shared Memory Segment Access Rules

and shmdt request that a particular System V shared memory segment be mapped into or removed from the
address space of the requesting process (read-only or write-only mode can be specified).

Unlike XENIX shared memory segments, System V shared memory segments do not have a user-visible
pathname but rather are referenced via a shared memory segment identifier which the TCB maps to a
file. So although the Shared Memory Segments are not named from the filesystem, the filesystem is used
for storage. The TCB maintains a System V Shared Memory Segment Table which provides the mapping
between user supplied key and the inode (of type System V Shared Memory) which the TCB uses to get to
the actual shared memory segment. The System V Shared Memory Segment Table entries include the key,
status information and a pointer to an inode. That inode is of type System V Shared Memory and as for
System V Semaphores the TCB interprets the union structure for the shared segment. The inode contains
(in that structure) the starting memory address of the segment, length, flags, in-core reference count, creator
information, etc. From this point the TCB does the same thing for both types of shared segment.

Processes: Although processes are the subjects in the Trusted XENIX system, when used as the recipient
of an inter-process signal they must be treated as objects. Processes are represented by entries in the proc
table.

Processes may send signals to other processes if and only if:

1. The sending process’ effective uid or real uid is the same as the receiving process’ effective uid or real

uid,

2. SL(receiving process) > SL(sending process), and
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3. The receiving process’ current privilege vector (see section 2.8.3, page 71) is a subset of the sending
process’ current privilege vector.

2.8 TCB Protection Features

This section describes the various features that are used to protect the resources from unauthorized access
by the subjects on the system. The features to be discussed include DAC, MAC, the use of privilege on the
system, auditing, Object Reuse, the trusted path implementation, archiving, printer spooler management,
and the system deflection mechanism.

2.8.1 Discretionary Access Controls

DAC allows subjects to grant or deny access to objects at their own discretion. All objects (except processes)
are identified by the owner’s effective uid and effective gid at the time of creation (see section 2.7.1 on page

54).

Trusted XENIX provides three DAC mechanisms: protection bits, access control lists, and setuid/setgid
bits. ACLs and protection bits can be applied to all Trusted XENIX objects except processes and unnamed
pipes. Three access types are available in Trusted XENIX: read (r); write (w); and execute (search access
for directory objects) (x).

Protection Bits

Stored in each file’s inode are 11 security-relevant bits associated with that file; the first two bits are the
setuid and setgid bits and the remaining nine bits specify read, write, and execute access for the object’s
owner, its group, and everyone else. Non-file objects have only the nine security-relevant bits, and these
are stored in kernel tables. The first set of three bits (rwx) represents access for the owner, the second for
the owning group, and the third for everyone else. When a user attempts to access an object, the system
first checks to determine whether the user is the “owner;” if so, the authorized access is granted (even if
the access is “no access”), and the search stops. If the user is not the owner, the system next checks to see
whether the user is a member of the group to whom the file belongs; if so, the access authorized to that
group is granted (even if the access is “no access”), and the search stops. Finally, if the user is neither the
owner nor a member of the group to which the file belongs, the system checks the accesses given to everyone
else, and that access is granted.

Group membership for users is set by the System Administrator along with a default log in group. Users can
change their current group only by logging out and logging back in. Each file is represented in the system by
an inode, which holds information about the file, such as its physical location on the disk, its size, its owner
and group, and the permission bits associated with it. The owner’s effective uid and the effective gid are
recorded in the inode at file creation. The chown and chgrp commands allow the owner of a file to change
its owner or group; however, doing so will clear any setuid or setgid bits set on the file. The only other users
who can change a file’s ownership or group are the TSP, using the chown command, and the SSA, using the
c_chowner TP from the privileged trusted shell. The chmod command allows a user to change the protection
bits on a file using a triple of letter or octal-digit representations of the permissions for owner, group, and
everyone else.
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The umask command specifies the default protection bit settings when a file is created. Any bits set to “1”
in the umask will be cleared upon file creation. The default umask for the system (when the user has not
specified a umask) is 077, meaning that only the user has access to the object. For files automatically created
by the system (as opposed to explicitly by a user), such as output redirection and file backup by an editor,
the umask is masked onto the shell’s default protection of 0666. Thus, the protection applied to files with
the default umask of 077 is 0600 (read/write for the user only):

Default umask 000111111
Shell default protection 000110110110
Result (0600) 000110000000

Access Control Lists

The second DAC mechanism provided by Trusted XENIX is the ACL, which can be associated with files,
directories, System V message queues, System V semaphores, System V shared memory, XENIX semaphores,
XENIX shared memory, named pipes, and devices. ACLs provide a more convenient way of specifying read,
write, and execute access control for individual users, groups, and everyone else. ACLs are represented as
files, and the number of entries in an ACL is limited only by the maximum size of a file. The inode number
for the ACL file and the name of the ACL file are stored in the inode of the file whose DAC information the
ACL holds. ACLs have the same security label as the file they protect. ACLs are stored in the root-owned
directory /.ACL with protection 700 (rwx for root only); each file system has its own /. ACL directory. Users
cannot access ACL files directly; only the TCB can access ACLs, and only the owner of the file protected
by an ACL can modify it. Externally, ACLs are of the form: “user-id:group-id:access-type”. The user-id
and group-id are the names of the user or group to which access is being specified, respectively, and can
be replaced by the wildcard keyword “ALL”, indicating that the specified access applies to all users or all
members of the group. If the user-id or group-id is omitted, that field is implicitly set to “ALL”. The
access-type field may be any alphabetical combination of the letters r (read), w (write), and x (execute); a
single octal digit corresponding to the set of three permissions; or blank, specifying no access.

ACLs are not created automatically, and no user-settable defaults exist. As part of the high-level interface
(untrusted user commands, interpreted by the shell), the owner of the object can use the acl mk command
to create an ACL that duplicates the object’s current protection bit specification. Then the owner can use
acl add and acl rm to add and delete specific entries. Commands to list and purge an ACL are also provided.
When an ACL is created, the low-order nine protection bits are set to zero (no access). The high-level
interface sorts the entries from most specific user-id to least specific as they are added to the list.

SETUID Protection

The two high-order protection bits of a file are the setuid and the setgid bits. These bits may be turned on
only if the file is executable. The file owner can set these bits only by using the privileged chmod command
available only through the trusted path mechanism. When a file with one of the bits turned on is executed,
the resulting process takes on the effective identity of the file’s owner or group and assumes all of the
discretionary access rights associated with that identity.

This setuid/setgid mechanism is a very useful, and potentially dangerous, feature if left uncontrolled. Two
of the most common abuses in UNIX systems historically have been the overwriting of setuid files and
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the actions of Trojan horses. In the first case, a malicious user locates a setuid/setgid file to which he or
she also has write access, overwrites it with a copy of the shell, and then proceeds to operate with all of
the discretionary privileges of its owner/group. In the second case, a malicious user creates a Trojan Horse
program which, when executed, creates a setuid/setgid file with the victim as owner/group; so that whenever
the malicious user executes it, he or she assumes the identity of the victim/victim’s group.

Trusted XENIX provides protection against these two abuses of the setuid/setgid mechanism. If a se-
tuid/setgid file is opened for write, the setuid/setgid bit is cleared, thus eliminating the first avenue of
attack. The confinement of the capability to set the setuid and setgid bits to within the trusted shell via the
privileged option of the chmod command eliminates the possibility of a Trojan horse’s setting the setuid or
setgid bit on a file.

Programmers are still responsible for creating “well-behaved” setuid/setgid programs, meaning that a user
running the setuid/setgid program should not be able to escape to a sub-shell without resetting the effective
uid or the effective gid. Otherwise, the user would be able to access all files of the program’s owner/group.

DAC Algorithm

When a user process attempts to access an object, the DAC mechanism mediates the access using the
following algorithm.

1. Check to see whether setuid bit is set. If so, grant DAC privileges of the file’s owner.
2. Check to see whether setgid bit is set. If so, grant DAC privileges of the file’s group.

3. Check to see whether an ACL exists for the object. If so, scan the entries sequentially until an entry
matching either the user’s effective uid or effective gid is found. If a match is found, grant that access;
else grant no access.

4. If no ACL exists, check the nine low-order protection bits. Scan the permission bits from left to right,
and grant the user the permissions specified for the first match found.

As mentioned above, the high-level interface sorts the ACL entries from most specific to least specific. If for
some reason the user chooses to write a routine to add entries to the ACL list using the system calls, rather
than using the delivered interface, and if the user’s routine does not include a sort function, the entries would
be unsorted, as the system call merely appends an entry to the end of the file. In such case, the system
cannot guarantee that the most specific access rule is applied, since the first match will be selected.

2.8.2 Mandatory Access Controls

The mandatory security policy restricts the type of operations a subject may perform on an object based on
the relationship between the subject’s security level and the object’s security level. For each subject/object
type supported by Trusted XENIX, a set of mandatory policy rules have been defined which control creating
subjects and objects; deleting subjects and objects; and reading, writing, and executing objects. These rules
are patterned after the security model defined by Bell and La Padula [BELL], although some of the Trusted
XENIX rules are more restrictive than their Bell and La Padula counterparts [INTP].
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Object Type Rule Enforced
File
Special File (Device) Read/Execute, Search (Directory) iff Ls > Lo
Directory Write iff Ls = Lo
Shared Memory Segment
ACL
Named Pipe
Semaphore Read/Write (open/close) iff Ls = Lo
Message Queue
XENIX Shared Data Segment
Process Signal (kill) ¢ff Ls < Lo
All Null for all other cases

Table 2.14. Access Rules for Non-Trusted Subjects

Each subject and object in Trusted XENIX is assigned a sensitivity label, which comprises one hierarchical
security or clearance level and a set of non-hierarchical categories; this sensitivity label is used as the basis
for all MAC decisions. The sensitivity label is internally represented as a nine-byte vector stored as the
seclab field of the inode. The first byte is an integer representation of the hierarchical level of the subject
or object, so that 255 levels plus the WILDCARD (see section 2.8.3 on page 75) may be represented. The
remaining eight bytes represent a bit-mapped set of from zero to 64 non-hierarchical categories. The SSA
defines these levels and categories.

The security levels of the Trusted XENIX system are partially ordered by the relationships equals, dominates,
dominated by, and isolated from.

e The security level L1 is said to equal that of L2 if the security level of L1 is equal to that of L2, and
the category set of L1 is equal to the category set of L2.

e The security level L1 is said to dominate that of L2 if the security level of L1 is greater than or equal
to that of L2, and the category set of L2 is a subset of that of L1.

e The security level L1 is said to be dominated by that of L2 if the security level of L1 is less than or
equal to that of L2 and the category set of L1 is a subset of that of L2.

e The security level L1 is isolated from the security level L2 if L1’s category set is not included in L2’s
category set, and L2’s category set is not included in L1’s category set.

The access rules for non-trusted subjects are depicted in table 2.14.

The SSA defines System and User security profiles. The System Profile comprises:

e The System Security Map (i.e., classification and category tables), which includes:
— the system maximum level (HIGH) and the system minimum level (LOW),
— the allowed classification numbers and category sets (0 — HIGH for levels and subsets of ALL
bitmap category sets), which cannot be deleted, changed, or duplicated,
— the printed (external) names for classification numbers and category sets;
e The Device Maximum Level (DEVmax) for each attached physical device, where DEVmax < HIGH,;
e the Device Minimum Level (DEVmin) for each attached physical device, where DEVmin > LOW.

The User Profile comprises:
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e The User Maximum Level (UML) for each user, where UML < HIGH,;
e The User Default Level (UDL) for each user, where UDL > LOW;
e The Group Maximum Level (GML) for each group, where GML < HIGH.

The security tables are verified by the TSP by running the scheck TP as the last phase of secure system
installation. This check verifies that the database defining the system security profiles satisfies the security
requirements for the system, and that the attributes of all command files, data files, and related directories
required for secure operation of the system conform to their specifications in the Installation Table. On
system power-on or re-boot, scheck is run from /etc/rc, and must run successfully in order for the system
to transition to multi-user mode. If scheck fails, the system will not come up and the user will be forced
to re-boot. The SSA may execute scheck from the trusted shell during multi-user operations; if it fails, the
TSP must put the system into maintenance mode to take corrective action.

2.8.3 Privilege

A variety of privilege mechanisms are used in Trusted XENIX. These include mechanisms which distribute
the power of the traditional UNIX “superuser,” trusted processes, a mechanism for checks and balances
among privileged roles on the system (the “power hierarchy”), and use of the WILDCARD security label.
These mechanisms are discussed below.

The Generalized Privilege Mechanism

The single, omnipotent privilege normally accorded to the superuser (uid 0) during normal multi-user oper-
ations in a traditional UNIX system has been decomposed in order to allow for a finer granularity of control
via a GPM. The GPM is implemented as a string (vector) of 64 bits of which 36 are used to define distinct
privileges, each represented by a single bit.3* A GPM vector is located in the inode of every file. The default
GPM vector is all zeros, indicating no privileges. Each process has three GPM vectors associated with it,
each of which are explained in section 2.7.1 on page 54.

In the case of a process created by a fork call, the child process inherits the privilege vectors of its parent.
In the case of a process transformed as the result of an ezec call, the Current GPM vector of the resulting
(transformed) process is constructed by taking the union of the Effective GPM vector of the calling process
and the privilege vector (located in the inode) of the new process file. The Effective GPM vector will initially
be identical to the Current GPM vector, and the Previous GPM vector will be set to the invoking process
Effective GPM vector at the time of invocation.

The Current GPM vector initially assigned to the user’s process at log in is the GPM vector stored in the
inode of the user’s login shell (typically a null vector for all non-trusted users). The Effective GPM vector
is set to the same value, and the Previous GPM vector is set to null.

Privilege bracketing allows a process to drop privileges from its Effective GPM vector and/or reacquire
any privilege that is contained in its Current GPM vector. Use of the bracketing feature has no effect on
the Current GPM vector, the Previous GPM vector, or the GPM vector stored in the inode of the file in
execution. Bracketing is accomplished through the use of lapse and acquire system calls and is used by TPs
in this system for the bracketing of the MAC_EXEMPT and DAC_EXEMPT privileges. Privileges may also

34 The WILDCARD privilege is ineffective by itself and will always require at least one additional bit to be set.
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be permanently dropped (i.e., they may not be reacquired using the acquire system call) by a process using
the drop system call.

The GPM vector is accessed by the system calls getfpriv or getppriv, which return the privileges of the
specified pathname, or process respectively. The system call privilege may be invoked from within a trusted
process to determine the privileges that are currently “on” in the trusted process’ Effective GPM vector.
The GPM vector located within a file’s inode may be set by the TSP using the setfpriv system call.

Privileges currently defined for the GPM are shown in table 2.15.

Privileged System Calls

Privileged system calls are those system calls that may be executed only by some subset of the processes on
the system. Trusted XENIX confers privilege to execute these calls through use of the Previous GPM vector
(i.e., appropriate privilege bit set in the GPM vector of the calling process).

Table 2.16 gives a list of privileged system calls, their functions, and the privilege needed to invoke the
system call.

Non-Privileged System Calls with Privileged Options

Non-privileged system calls are those system calls which may be executed by any user. Some non-privileged
system calls contain a range of options, of which only a subset is available to the general user population.
The remaining options are called privileged options and are available only to processes whose Effective GPM
vector has the appropriate privilege bit(s) set.

Table 2.17 lists the non-privileged system calls that possess privileged options in Trusted XENIX.

Power Hierarchy Mechanism

Trusted XENIX uses a “Power Hierarchy Mechanism” to implement a hierarchy among the TSP, SSA, SO,
AUDIT, and all other user groups. It is utilized only by trusted processes (though not by all) and determines
whether a particular user may alter information that either describes or is the property of another user (for
example, passwords). The hierarchy is maintained via the association of a group tag with every group, both
administrative and user, on the system.

The group tag consists of a number and a group set. Using the number portion of the group tag, all
groups can be ordered from highest to lowest power, with some groups being of equal power. The second
component of the group tag is the group set—a list of groups consisting of the group itself and all other groups
dominated by it. This list is strictly determined by the numerical portion of the group tag in comparison
with the numerical portion of all other group tags. Taken together, the two components of the group tag
explicitly represent the position of a given group within the power hierarchy.

The values defined for the groups on Trusted XENIX are given in table 2.18.

The TSP’s group tag is greater than that of every other user. An SSA’s group tag dominates that of
every other user except the TSP, the Auditor, and other SSAs. For example, in the case of the trusted
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Privilege | Result
ACCT run acct, enables/disables process accounting
ACL run aclcreat, aclopen, aclrm with unrestricted access to all users
AUDIT run audi, controls auditing
AUDITLOG run auditlog, write an audit record
CHMOD run chmod, change mode of file (the 11 UNIX file protection bits), with
unrestricted access to all users
CHOWN run chown, change owner, with unrestricted access to all users
CHROOT run chroot, change root directory
DAC_EXEMPT | exempt from DAC checks
DEVICE use an in-use device which was opened in exclusive mode or execute certain

1octl calls

DUMPKMON run dumpkmon

FORK run fork, allowed to exceed per-user limits
KILL run kil against any process
LINK_DIR run link, unlink with a directory as object

MAC_EXEMPT | exempt from MAC checks

MAINT_-MODE | indicates process is in maintenance mode

MKNOD run mknod for all types of files

MOUNT run mount, unmount

MSGCTL run msgctl, to own all message queues

NICE run nice to increase process priority

PLOCK run plock, locks process, text, or data in memory

PROCTL run proctl, performs various functions on active process or process groups
SEMCTL run semctl to own all semaphores

SETFLBL run setflbl to set file labels (except wildcard)

SETFPRIV run setfpriv, set privilege vectors on files

SETFSLBL run setfslbl, set filesystem minimum and maximum labels
SETPRLBL run setprlbl, change current process security label

SETUID run setuid, setgid to change real uid/gid of process
SETUNAME run setuname, sets node name

SHMCTL run shmctl to own all shared memory

SHUTDN run shutdn, flushes I/O buffers and halts CPU

SIGNAL run stgnal to catch a SAK signal and, in effect, disable the SAK
STIME run stime, sets the system time

ULIMIT run ulimit to increase file size limit

UTIME change modification and access times on non-owned files
VHANGUP run vhangup, revokes all access to current control terminal

WILDCARD allows process that also has SETFLBL privilege to set file labels to wildcard

Table 2.15. GPM privileges in Trusted XENIX
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| System Call | Function | Privilege
acct enable/disable process accounting ACCT
audit enable or disable auditing AUDIT
auditlog append record to audit log AUDITLOG
chroot change the root directory CHROOT
lock lock a process in primary memory PLOCK
mknod make directory, or ordinary, special file MKNOD
mount mount a file system MOUNT
plock lock process, text, or data on memory PLOCK
setflbl set file label SETFLBL
selfpriv set file privileges SETFPRIV
setfslbl set file system labels SETFSLBL
setpribl set process label SETPRLBL
setuname set node name of current system SETUNAME
shutdn flush block /O and halt the CPU SHUTDN
stime set the time STIME
umount unmount a filesystem MOUNT
uname get node name of current system SETUNAME
vhangup virtually hangup the current control terminal | VHANGUP

Table 2.16. Privileged System Calls

System Call |

Function

Privileged Operation

aclcreat create an ACL run on non-owned files

aclopen open an ACL to operate on it run on non-owned files

aclquery fetch an entry from an ACL run on non-owned files

aclrm remove an ACL from the system run on non-owned files

chmod change mode of file run on non-owned files

chown change owner/group of file run on non-owned files

fork create new process exceed limits

kall send kill signal to process run on processes without matching uid
Link link new file to existing file link to a directory

msgctl provide message control operations use command I[PC_RMID, IPC_SET
nice change priority of a process specify negative increment value
proctl control active processes send to all processes (except 0, 1)
semctl control semaphore operations use commands IPC_RMID, IPC_SET
setgid set group id set for non-owned files

setutd set user id set for non-owned files

shmectl control shared memory operations can use commands [PC_RMID, IPC_SET
signal specify action on receipt of signal allow catch of SAK signal

ulimat get and set user limits increase process’ size limit

unlink remove directory entry unlink a directory

utime set file access and modification times | set for non-owned files

Table 2.17. Non-privileged System Calls with Privileged Options
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| Role | Power Number | Group Set |
TSP 3 {bin, ssa, audit, so, aa, user}
SSA 2 {ssa, so, aa, user}
AUDITOR ) [audit]
SO 1 {so}
AA 1 {aa}
USER 0 {user}

Table 2.18. Power Hierarchy

process passwd, the TSP can change the password of any user, while those in the SSA role can change their
own password and any other user’s except the TSP’s, the Auditor’s, and other SSAs’. Unprivileged user
group tags are zero by default. The library subroutine chkpriv implements the power hierarchy for Trusted
XENIX. It determines whether a subject (invoking process) can be permitted to change the security relevant
attributes of an object. The subject is granted permission if the subject is the owner of the object, or the
subject i1s not the owner of the object and the “power” of the subject is greater than that of the object.

The WILDCARD Security Label

Trusted XENIX assigns security labels to all subjects and objects. The security label assigned is a two part
tag (hierarchical level, category set) that may take on the values specified by the SSA in the clearance table
/ete/security/s_clearance and the category table /etc/security/s_category. The WILDCARD label is defined
in these tables as the security label whose hierarchical level equals “WILDCARD” and whose category set
equals “none.” It has a unique, specially defined, relationship to all other defined security labels. Specifically,
the WILDCARD security label “equals” (and by extension, “dominates”) any other defined security label,
regardless of that label’s clearance level or category set (comparison of labels is performed by the library
routine SLcmp).

The motivation for defining the WILDCARD label in Trusted XENIX is to create a well-defined mecha-
nism for setting up multilevel objects within the system without having to explicitly handle each instance
with appropriate code within the kernel. Typically, these objects are TCB-maintained storage areas where
information of differing security levels is stored in common. The following is a list of these objects:

o /dev/null
o Jdev/tly

o /dev/swap
o /dev/root
o /dev/hd0A
o /dev/kmem
o /dev/mem

A label may be set to the WILDCARD value only if the process attempting to set the label possesses
the GPM privileges of SETFLBL and WILDCARD. Only the trusted process init possesses both of these
privileges. The trusted process mount possesses the WILDCARD privilege and inherits the SETFLBL when
it invokes the mkdir program. mount uses this privilege to create the /. ACL directories, which will contain
access control list (ACL) files. Since the ACL files can have security labels which differ from one another,
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the containing directory (/.ACL) must have the WILDCARD label. In addition, the TSP, when running in
maintenance mode, has all the privileges of the trusted process init. The TSP operating in the maintenance
mode can therefore set the WILDCARD label on any file system object.

2.8.4 Auditing

Control of auditing in Trusted XENIX is accomplished through a combination of actions performed by the
TSP and the Auditor. The TSP defines the names of auditable events during system installation and the
Auditor is responsible for correctly managing auditing once the system is running. Thus, only privileged
users may control the audit mechanism.

Each audit event is assigned an audit level (the event audit level), and each user is assigned an audit level
(the process audit level). Process audit levels can be zero, one or two; event audit levels can be zero through
three. An event is audited if the event audit level is greater than the process audit level. Thus, a value of
zero means an event is not audited and a value of three means it will always be audited.

Process audit levels are set by the login trusted process for ordinary users, according to the user and group
specified at log in. It is set to the lower of the user and group process audit levels. The default values are
one for user audit levels, and two for group audit levels. Processes that are created other than through login
(such as daemons that are created during initialization) have a fixed process audit level of one.

To illustrate the use of this audit level mechanism, consider a call to mkdir, which issues two system calls
to link. If the Auditor set the audit level of link to two and mkdir had its audit level set to two, then link
will not generate an audit record when called from mkdir. If the Auditor instead set the audit level of link
to three, calls to link from mkdir would then be audited. In this manner the generation of redundant audit
records can be controlled. In addition, mkdir generates its own audit events.

The TSP defines the names of auditable events during system installation through the use of the auditnam
command. The TSP also sets the audit level for each event, turns on auditing and defines the directory which
will contain the audit trail. This directory has owner audit, group audit and protection mode 750, meaning
that a process with uid eudit has “rwx” access, one with gid audit has “rx” access, and all others have null
access to the directory. This directory is also defined at system high (the maximum possible sensitivity level,
and all categories.) The name of the active audit trail resides in the file /etc/security/audit/log and the
names of all previous audit trails reside in the file /etc/security/audit/pastlog.

The protection modes on the audit trail are “rw” for the TPs with uid audit and “r” for the group audit.
The maximum size of the audit trail is settable by the Auditor.

Through the auditsh set of commands, the Auditor has the capability to start and stop auditing, set the
active event levels to those in the audit control file, change the audit event levels, delete old audit trails,
display the current audit trail, change the audit trail size, and change the table of object security level ranges.
The Auditor is also provided with a command, c_chaudlvl, which allows changing of process audit levels. All
Auditor commands are fully audited.

Through the use of an audit reduction tool and the standard grep command, Trusted XENIX has the
capability for selectivity based on uid, gid, security level, and any other field within an audit record.

The actual audit logging mechanism is part of the TCB and is implemented by the kernel routine sacct.
This routine collects information from the user block and kernel data areas and places it into the in-core
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auditing buffer. The auditing file is written in the same manner as any disk I/O performed inside the kernel.
If the write 1s unsuccessful, messages are sent to the system console, auditing will stop and the system will
shutdown. TPs use the auditlog routine, which is a privileged system call which uses the kernel routine sacct
to generate an audit record. It can be invoked only by a process that has the AUDITLOG privilege.

The maximum amount of audit data that could be lost from a system failure is the amount of audit data
generated in the time between writes of disk buffer data to the disk. This occurs at least every 30 seconds
in the standard system configuration. A system administrator can specify a smaller time interval if they
desire. For example, if the data were written once each second then only one second of audit data would be
vulnerable to a system failure. The theoretical maximum amount of data that would be lost given an sync
interval of 1 second was computed to be approximately 263 records; the actual maximum will be much less,
and will be based on the amount of other system activity and the amount of audit data being generated at
the time of system failure.

2.8.5 Object Reuse

Whenever a new storage object is allocated to a subject, the object either contains no information or it
contains only information assigned to it by the kernel. Storage objects are allocated by the TCB as described
below.

e FILE: The creat kernel call creates a file with zero length. Any attempt to read past the end of file
fails. The open kernel call can create a file (if the O_CREAT flag is set); this is implemented internally
by calling creat and behaves identically. A file system’s superblock contains an array used to cache the
numbers of free disk blocks in the file system. The utility program mkfs organizes the data blocks of
the file system into a linked list. As data are written into a file (i.e., a file “grows”), the kernel allocates
a buffer for a new data block and clears the buffer by overwriting it with zeros.

e DIRECTORY: The mkdir kernel call creates and initializes a directory. All directories initially contain
two entries, “.” and “..”. Each entry comprises 16 bytes (2 for the inode number and 14 for the name
of the entry), giving the newly created directory 32 bytes of information. Any attempt to read past
the initial 32 bytes of the newly created directory fails. When a file is deleted from the directory, its
inode number is set to zero and the filename is overwritten with blanks in the directory entry.

e PIPE: The pipe and mknod kernel calls create pipes. Normally a process waits until data are in the
pipe before it reads from the pipe; if the pipe contains no data, no read occurs. If a process attempts
to read a newly created pipe before any data are written, either the read will wait, or if the 0_NDELAY
flag 1s set for the read call, the read returns a zero, thus satisfying the Object Reuse requirement.

e DEVICES: Only a TP may directly access a device. For example, only the TP star is allowed to
access the diskette drive (for the unprivileged user). Each TP is responsible for ensuring that devices
are cleared before reuse. Users have direct access to the terminal, which is allocated to the user by
login. Any attempt to read the terminal buffer upon allocation (i.e., before the user has written into
it) returns zeros. All video buffers, and caching buffers on disk controller cards are overwritten with
zeros by the drivers which control them before reuse.

e XENIX SEMAPHORES: The creatsem kernel call creates a zero-length file (if it does not already
exist), writes a zero to it (since the semaphore will hold only a numeric value) and opens it (i.e., allows
the creating process to use it). The mknod kernel call can be used to create a semaphore; however,
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it is not initialized until the opensem kernel call is issued. Since mknod creates a zero-length file, the
Object Reuse criterion is met.

e XENIX SHARED-MEMORY SEGMENTS: The sdget kernel call with the SD_.CREAT flag set creates
a XENIX shared-memory segment (if it does not already exist) and attaches it to the data space of
the current process. The kernel fills the shared-memory area with zeros, so a read will return zeros.

e SYSTEM V SEMAPHORES: The semget kernel call creates and gives access to a set of semaphores,
initializes them to zero, and fills in the other fields with kernel information.

e SYSTEM V SHARED MEMORY SEGMENTS: The shmget kernel call creates a new region of shared
memory or returns an existing one, and the shmat kernel call attaches a region to a process. The kernel
overwrites with zeros memory allocated by the shmget call, so that a read to a newly allocated area
returns all zeros.

¢ SYSTEM V MESSAGE QUEUES: The msgget kernel call creates a message queue (if it does not
already exist) and returns a message descriptor that designates the message queue. Messages are on a
linked list per descriptor. If a subject attempts to receive a message before any other process sends a
message, no message is received from the queue.

o ACLS: The aclcreat kernel call creates a new ACL or initializes an existing ACL. In creating a new
ACL, the call returns a descriptor to a zero-length file. If the ACL already exists, the kernel truncates
it to length zero before returning the descriptor. In either case, an attempt to read past the end of the
ACL file will result in an error.

o MAGNETIC MEDIA: The star TP provides a secure means of writing to and reading from the built-in
diskette drive or cartridge tape unit (CTU). A general user can use star (only from the trusted shell)
to back up files he or she owns. A user can read from a diskette or cartridge tape only files which
he or she owns and can read them only into a directory which he or she owns. Thus, no information
stored on the media by a previous subject 1s available to any subject that obtains access to the media
by using normal star procedures.

¢ MEMORY: Memory is allocated when a new process is forked and ezeced. Memory is also allocated
on swap in and out. When memory is allocated or extended for a new process, it is overwritten by
the new process’ data or explicitly with zeros (e.g., large non-initialized arrays). The same is true for
swapping processes. Any attempt to read past the end of the process’ allocated memory returns an
error.

e CPU REGISTERS: All process visible 80286 registers are saved when (in the u_area) when a process
swaps out and are restored (from the u area) when a process swaps in. Hence, no information is
maintained across a context switch.

All process visible 80386 registers, except the extra FS and GS registers, are treated like the 80286
registers. The FS and GS registers are cleared during a context switch.

When a process that is, or has been, using the 80287 or 80387 math co-processor is swapped out, the
main CPU issues an instruction to wazit until the co-processor has completed any operation that might
be in progress and then reset (i.e., clear and reinitialize the registers) that co-processor.
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2.8.6 Trusted Path

A trusted communication path is provided between the user and the TCB. This path protects the user during
initial log in and authentication or any time the user wishes to interact with the trusted shell.

To implement the trusted path, a mechanism called the Secure Attention Key (SAK) is used. The SAK
mechanism consists of two control-Z characters pressed in quick succession (less than a second between
them). This sequence of characters is detected within the device driver. When the trusted path is invoked,
all of the invoking user’s processes are immediately terminated. Both read and write access to the terminal
are revoked, and the trusted shell is given control. The device driver sends a special signal, SIGSAK, to init.
This signal causes the SAK signal handler in ¢nit to be executed. The signal handler reads the current entry
for the terminal line and determines the previous state of the controlling process on the line. If it reflects a
logged in user (even if in TSH.PROCESS state already), it changes the state to TSH.PROCESS and calls a
routine to start the trusted shell (else a getty is spawned on the line). Since the TCB inspects all keystrokes
before they are given to a process the SAK mechanism is prevented from being interrupted by an intruder
process.

The trusted shell tsh will prompt the user for a command from a menu of trusted commands. These
commands allow such things as changing passwords to listing files in the current directory. Users can be
assured that they are communicating with the TCB and not a spoofing process.

When the trusted shell is invoked, the init trusted process writes a special value in file /etc/utmp to indicate
entry to the trusted shell via the SAK mechanism. Following this, nit executes the trusted shell, which
displays a menu of commands to the invoking user available under the trusted shell.

If a user attempts to invoke the trusted shell directly (no SAK mechanism), the special flag is not set, and
the process state does not change to TSH_PROCESS. A message will be displayed informing the user that
this is not a trusted communication path. No programs will perform their trusted functions from the trusted
shell unless the trusted path is used.

The remote connection capability between Trusted XENIX machines (see section 2.6.7, page 48) has required
a special trusted path function to be developed. Since a user process on the client machine cannot be allowed
to directly invoke the trusted shell on the server machine, for obvious reasons, the Trusted XENIX client
architecture ensures that this cannot happen. Basically, the serial device driver has been designed to prevent
the SAK from being sent out across a STU-III device connection. Since the SAK must be sent across the
connection by trusted processes (e.g., client-tpath), this device driver filtering function is switchable via a
privileged ioctl call.

Note however that server-conn does not use SAK when establishing a connection for client users. Rather,
by virtue of the fact that only trusted software can be involved in the process of connecting the STU-III
devices, that the server architecture ensures that the STU-III device is reset after every connection, and
that a connection cannot be made when a connection already exists, server-conn is guaranteed to have a
trusted path to the server machine for login. Note also, that since server-conn can be invoked only via the
trusted shell mechanism on the client end and that it does not invoke any untrusted software during the
login process, including the period when the user types in their password, that no 1&A information goes
outside the TCB boundary.

Once a connection is established, however, users still need the capability to invoke the trusted shell on either
of the two machines. The normal SAK brings it up on the client machine. To bring up the trusted shell on
the server machine, a user must enter SAK and therefore enter the trusted shell on the client machine first
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and then select client-tpath which will then turn off filtering temporarily and send the SAK sequence to the
server machine. client-tpath will then provide simple terminal emulation to allow the user to interact with
the remote trusted shell. When the user exits the trusted shell, server-conn is invoked to allow the user to
continue using the connection with the terminal emulator of choice.

2.8.7 Archiving

The Trusted XENIX Secure Tape Archiver (the star Trusted Process) writes files to and retrieves them from
archival storage (i.e., diskettes or cartridge tapes). The star TP is capable of creating multi-level archives
and can be invoked only while running under the trusted shell (or by the TSP in Maintenance mode). Only
files owned by the user invoking star may be extracted or retrieved (the TSP and SO are exempted from
this requirement), and star will retrieve files only into directories owned by the invoker and will not retrieve
files which already exist in the file system. Files restored by star are restored to their original location in
the file hierarchy (absolute pathnames are used).

The first action taken by star is to determine the caller’s “state” by calling chkTPstate, which returns an
integer value indicating the privilege state of the process which invoked star. If the privilege state is something
other than trusted shell, restricted trusted shell (a state available only to the SO), or maintenance mode (a
state available only to the TSP), star terminates without performing any action. When called by a normal
system user, star checks file ownership against the process uid and allows file exportation only when the two
are the same. When called by either the TSP or the SO, star operates in a privileged mode, running with
MAC_EXEMPT and DAC_EXEMPT privileges.

File attributes (e.g., protection bits, ACL, security label, uid, gid, size, modification time) are preserved in
the archive copy. However, the setuid, setgid, and “sticky”3® bits are preserved when star is invoked by the
SO or TSP, but not when it is invoked by an unprivileged user. GPM vector bits are always set to zeros by
star. TSP action is necessary to restore GPM privileges to privileged programs. However, since all privileged
programs are registered in s_install, the TSP can refer to this file to determine what privileges should be
restored to files archived using star.

Files exported by star are encrypted using Data Encryption Standard chain-block encryption if the SSA has
installed an eight-byte key in /etc/security/data/star_key. This key is accessible only to the SSA. The normal
user is not informed of the key value or allowed to select or turn off encryption of archived information. The
normal user is, however, informed as to whether the SSA has encryption enabled or disabled. Integrity of
information retrieved by star can be enhanced only if the encryption has been enabled. The TFM specifically
recommends that the SSA always set the key to a non-null value.

Invoking the trusted shell and running star is the only way an unprivileged user can export information to
the diskette or cartridge tape drives. Since it is exempted from MAC and DAC checks, star allows the user
to dump and retrieve an entire file hierarchy to or from a medium, as long as the security levels of exported
files are bracketed by the device minimum and maximum levels of the diskette drive, as specified by the SSA.
The user is not informed of the range of security levels or the highest level of the files exported or imported
by star.

The standard UNIX routine Tape Archiver (tar) is available, but it does not allow unprivileged users to
access the diskette or cartridge tape drives, since neither tar nor unprivileged users possesses the access
permissions to the drive special files (device drivers). The checksum for staris the one’s complement of the

35The “sticky” bit is not part of the DAC mechanism and therefore has not been discussed here.
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checksum used in tar, thus helping to ensure that tar and star files do not become confused.

Both the TSP and the SO can use star (while within maintenance mode or the privileged trusted shell,
respectively) to export any file in the system. The star TP ensures that a file’s security labels, ACLs, and
original uids are also exported and properly represent the security level, access permissions, and ownership

of the file.

2.8.8 Printer Spooler

User print requests are made using the system command lp <pathname[s]>. The first action performed by
Ip is to perform MAC and DAC checks (for read access) on the user’s print request. The necessary calls to
perform these MAC and DAC checks are made by Ip, which passes the user’s real uid to the routines that
actually do the checks. At the time it is called, lp itself is operating with the effective uid of the pseudo-user

Ip.

If the MAC and DAC checks grant the required access, Ip creates an entry in the printer spool directory
(/usr/spool/lp) indicating the user’s work request. At that time, Ip is still operating with the effective uid of
Ip. After it has entered the work request, Ip changes its effective uid to that of the requester (leaving open
the newly created file entry in the printer spool directory) and copies the requested file into the print spool
directory, where it is stored with the user’s work request and the user’s CPL. Files to be printed are always
copied into the printer spool directory at the time of the print request. The label associated with each file
in the print spool directory is the CPL of the process which invoked Ip, not the actual label of the file itself.
The role of Ip in printing the file is then complete, so it ezits and the user continues with his or her original
process.

The change in Ip’s effective uid is mandated by the nature of its MAC and DAC privileges (as defined by
its GPM vector). So that it can violate the MAC policy (i.e., place files of differing security levels in the
same directory), Ip is MAC_EXEMPT. It is not DAC_EXEMPT, however, and must therefore operate with
the effective uid of the user (while maintaining the gid of Ip) to copy the user’s file into the printer spool
directory.

The trusted daemon Ipsched polls the spool directory looking for work requests. Whenever it finds such a
request, it forks a copy of itself which will manage the print request and will, in turn, ezec a print routine
(nwprt) to perform the actual printing. The child copy of Ipsched first checks the label associated with the
file to be printed against the level associated with the printer itself. The label associated with the file to
be printed is the CPL of the process requesting the print and must be within the range of security levels
assigned to the printer by the SSA (in the s_device table). Ipsched then accesses the /etc/security/s_category
and /etc/security/s_clearance files to obtain the SSA-designated human-readable labels that correspond to
the machine-readable security labels included with each file in the spool directory. Ipsched schedules the
individual printers, having sole access to their individual device drivers, and finally ezecs nwprt, which
controls pagination of the output file, inserts beginning and ending banner pages, and labels the top and
bottom of each intermediate page (with the label of the file, or CPL of the requester if the input is not a
file).

In the event the label stored with the file to be printed is not dominated by the Maximum Device Level
of the requested device, Ipsched prints a standard message (on the requested printer) indicating that the
requested file cannot be printed. The only information specific to the print request that is contained in this
message is the number of the print request. The process responsible for actually sending data to the printer

81
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
CHAPTER 2. SYSTEM OVERVIEW

is nwprt. nwprt has been modified for Trusted XENIX so that it will print a circumflex in place of any hex
character that is less than 20 or greater than 7E. In addition, nwprt will print the following characters: 00
(null), 08 (backspace), 09 (horizontal tab), 0A (new line), 0C (form feed), and 0D (carriage return). In this
way, no software re-configuration of the the printers in the evaluated configuration is possible through escape
sequences in user data sent to the printer.

Banner pages cannot be overridden, and spoofing is prevent by means of a system-generated random number
which is printed on the header and trailer banner pages. Labels placed at the top and bottom of each
intermediate page can be overridden using an option to the Ip command. The default for intermediate page
labeling is “on.” Enough room on the banner pages is reserved for the longest possible label. All print
requests are auditable. Disabling of intermediate page labeling is also auditable.

2.8.9 Deflection Mechanism

Trusted XENIX employs a deflection mechanism which supports hidden /tmp directories. This directory
contains files that are created for temporary purposes (e.g. while editing or compiling programs). Therefore
the directory would have to be readable and writable by all subjects. However, since directories are single-
level objects, this causes a problem.

Trusted XENIX solves this problem by assigning the system low security label to /tmp, and creating a
number of subdirectories within it, one per security level. The subdirectories are of the form “Ox<map>",
where map is a sequence of twelve hexadecimal characters that can be mapped to the appropriate security
label of that subdirectory.

When a process is created, a flag called the deflection flag is set. The child process of a fork inherits the
deflection flag of the parent process, and the transformed process of an ezec keeps the deflection flag of the
calling process. This flag tells namei to use deflection; i.e., convert the path from /tmp to the appropriate
subdirectory, when resolving pathnames that use /tmp. The user has the option of turning off this flag with
the chtmp command; if this is done, the deflection flag is not set, and namei will perform no deflection (i.e.,
references to /tmp are conventional).

A hidden subdirectory of /tmp, if non-existent, is created at log in time by the login trusted process. The
mail utility also makes use of this deflection mechanism to provide a secure mail utility.

2.9 TCB Assurances

The following section will discuss the various assurance provided by Trusted XENIX, including maintenance
and installation of the system, configuration management, the functional testing philosophy, and methods
used to recover from system failure. This section will also include a general discussion on covert channel
management.

2.9.1 Maintenance and Installation

The TSP is responsible for installing and maintaining the operating system in a manner that ensures that
the security requirements of Trusted XENIX are satisfied. The system provides several tools and procedures
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for the TSP to accomplish this task.

Role of Trusted System Programmer

The TSP requires the highest skill level of the administrative users because this role involves generation,
installation, maintenance, and system recovery. The TSP must be familiar with the basic design of the
system including the kernel and trusted process architecture and the operation of the hardware components.
In addition, the TSP role requires familiarity with the use of all tools for system installation, diagnostics,
and recovery. The TSP role must be entrusted with the security and integrity of the system before the TCB
is operational. In the normal operating mode, the TSP special functions cannot be performed (the system
must be in maintenance mode).

Initial Installation

The TSP is responsible for installing the evaluated hardware properly using the guidelines described in the
System Administration Manual [SYAD] and User’s manual for the particular hardware platform. After the
hardware is installed, the TSP should run the diagnostic tests to verify its integrity. Once the hardware is
functioning properly, the TSP installs the software (operating system) following a step-by-step procedure
(which includes initializing all the security relevant data bases) detailed in the Starting Trusted XENIX
Manual [STXE]. Finally, the trusted program scheck is run by the TSP to verify that the data base defining
the security profiles of the system satisfies the security requirements. It also does a consistency check on the
attributes of all the command and data files to ensure that they were set up correctly.

Using Diagnostic Software

When power is applied to some of the System Units, the POST program is automatically executed. The
POST resides in the IBM PC/AT and IBM PS/2 ROM, and consists of 22 test programs. It contains
diagnostic routines that test the system board, the memory (including readback checks of every byte of
RAM), and the installed control units and I/O devices. Tt also tests standard operation codes, privileged
instructions, interrupts and protection mechanisms. The POST eventually returns to the ROM boot program
to continue the start-up procedure and attempts to load an operating system from the first diskette drive
(drive &). If that drive does not provide a program to load, the system attempts to load from the first fixed
disk (drive C). If this operation is not completed, the BASIC interpreter is made available to the user (see
section 2.5.7, page 21).

For information regarding further diagnostic tools and information specific to each of the hardware platforms
refer to section 2.5.9, page 21 and section A, page 117.

2.9.2 Configuration Management (CM)

The President of TIS provides senior management for the Trusted XENIX development and acts as the
Responsible Corporate Officer (RCO).

All changes to Trusted XENIX are directed and controlled by the Configuration Control Board (CCB), which
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meets periodically or as needed. As a minimum, the CCB consists of four individuals: the CM Manager, the
Evaluation Manager (VSA), the Development Manager, and the Product Manager(s). In most cases, the
CM Administrator and CM Integrator should also attend. The Product Manager acts as the Chairperson of
the committee. The administrative functions involved in managing changes to the system are performed by
the CM Administrator, and the CM Manager manages the CM process.

« ”»

Trusted XENIX is decomposed into Configuration Items (CIs). In terms of source code, a file (i.e., a “c

file, a “.h” file, etc.) is considered a CI, while in terms of documentation, an entire document is considered
a CI. Although the test scripts are composed of “.c” and “.h” files, the entire collection of scripts is assigned
one CI number. Cls are maintained in the CM library which is located partially on TIS’s main computer,
“SOL,” and partially on a workstation running Trusted XENIX, referred to as the “Source Machine.” Each
file on the Source Machine is controlled via the Source Code Control System (SCCS) even though each file

may not have its own CI number.

The CM process involves three types of reports:

e A Product Change Request (PCR) is used to document a proposed change to the existing product
(hardware, software, and/or documentation).

e A Change Tracking Report (CTR) is a document used as the central means of tracking progress of a
change from the PCR-assessment stage through change implementation and testing. All Cls affected
by a change are identified in the CTR package.

e An Implementator’s Report containing the complete and accurate list of all Cls affected in the course
of implementating the changes.

Anyone involved with the product may submit a PCR to the CM Administrator, who assigns the PCR a
number, logs it, and arranges for its presentation to the CCB. The originator presents it to the CCB, which
either defers it, rejects, it, or assigns it to an assessor. The assessor investigates the change request, describes
the change to be made, whether or not a new CI must be created, determines whether or not the change
affects the Trusted XENIX TCB, the impact of the change and the level of effort required to implement the
change. All of this information is then written in a draft CTR.

Once the PCR has been assessed, it is reviewed by the CCB, along with its draft CTR. At this point, the
CCB may either reject it (in which case, both the PCR and draft CTR are filed), defer it for consideration
at a later meeting, call for a reassessment, or accept it. If it is accepted, the CM Administrator closes and

files the PCR and logs the CTR.

As a part of the CCB review of the proposed PCRs, consideration is given to which Rating Maintenance
Phase (RAMP) cycle should include the PCR/CTRs. At the beginning of each RAMP cycle, the Vendor
Security Analyst (VSA) presents to NSA’s Future Change Review Board (FCRB) an overview of changes to
be made to Trusted XENIX and the preliminary security analysis of these changes.

If the CTR involves adding a new component (software or hardware) the appropriate analysis activites are
performed. If there is a change to the TCB, security analysis activites are performed. An implementor is
assigned the task of drafting the implementation of the change in the form of an Implementator’s Report.
To implement the change, the implementor obtains copies of all necessary configuration items from the
CM Library, makes the necessary modifications and performs unit testing (for code modifications). The
implementator puts the code on disk and gives it to the CM administrator for integration into the Test
Machine.

The implementor drafts the necessary changes and performs unit-level testing; upon successful completion of
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unit testing, the changed Cls are submitted for integration and security testing which includes running the
entire security test suite. If any additional problems requiring further investigation arise during implemen-
tation, the implementor drafts and submits a PCR regarding the changes needed. If the testing is successful,
a set of diffs are generated and given to the CM Administrator summarizing the changes to the CM Library.

When the change has passed the trial integration and security testing, the CTR package is presented to the
CCB for final review, at which time it may be accepted, deferred, or rejected. If accepted, the implementa-
tion is formalized by checking the modified Cls into the CM Library and closing and filing the CTR. The
final decision to package the implemented change or group of changes into a product release is outside the
responsibility of the CCB. Deferred CTRs remain open for future CCB review; rejected CTRs are closed
and filed.

RAMP Audits

Audits of the TIS RAMP process are conducted by the CM Manager, the CM Integrator, and the CM
Administrator under the supervision of the Evaluation Manager. An audit will take place at the beginning
of each RAMP cycle as well as every three months. If an evaluation team is required to test the TCB, the
RAMP audit should occur before that testing begins. One RAMP audit will be conducted with the TPOC
for each RAMP cycle. The results are included in the next quarterly status report following the RAMP
audit.

Criteria Interpretations

The TIS Evaluation Manager regularly reviews new criteria interpretations as they are posted on the Dock-
master Announce fourm. If a criteria is formalized that applies to Trusted XENIX, a PCR is generated
describing the criteria that must be met. An assessment is then made determining whether or not the
product meets the new interpretation. If it does meet the interpretation, a written statement of that fact is
attached to the PCR. If the product does not meet the interpretation, the required modifications are assessed,
a CTR is generated and the modifications are handled in the same manner as all other modifications with
the exception that the Implementators Report includes how the product meets the new interpretation. The
grace period allowed in the RAMP requirements is taken into consideration when determining how quickly
the CTR must be implemented.

2.9.3 Functional Test Software

The system is tested to assure that the security mechanisms and related software work as expected. Most
testing occurs at the TCB interface, with additional testing of security mechanisms. All user-visible trusted
processes and kernel calls directly available at the TCB interface are tested against their Descriptive Top-
Level Specification (DTLS). A “grey box” testing methodology is used to test the kernel calls. It is a method
of achieving the thoroughness of black box testing without the excess verbosity and without sacrificing test
coverage. For more details on the functional test software, see section 3.24 on page 111.

2.9.4 Recovery From System Failure

When Trusted XENIX encounters a situation that indicates a hardware failure or an inconsistency in critical
TCB data structures an automated impact assessment is made. If the damage is such that it cannot be
repaired without human intervention and the situation is such that Trusted XENIX cannot continue without
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possibly causing more damage or resulting in a policy violation, the TCB halts with an error message which
is printed on the system console. In order to proceed one must try to reboot the system after correcting the
error indicated by the error message. In many cases, this will require the intervention of the TSP.

When the system is repaired to the point that one believes it will boot again, an authorized user should
power-cycle the system thus causing the system to begin the normal boot sequence. During the normal boot
sequence, the system will execute the program scheck and the shell script /etc/rc, which contains a list of
commands that the system administrator selects to be automatically executed. TIS distributes the system
with an example /eic/rc which contains the fsck command.

The scheck command ensures that protection-critical data structures are in a consistent state. For example,
scheck ensures that all the command and data files required for secure operation of the system exist and
are consistent with each other (e.g., users are registered only on valid groups, users have clearances that
are valid, printable label names exist for all defined levels), that all privileged programs in the Installation
Table exist and that no other privileged programs exist, and that the file system satisfies the mandatory
compatibility rule. If scheck detects an inconsistency, it will abort the boot. If no errors are detected, it
simply returns, allowing the system to continue initialization with /etc/re.

When fsck is called with no arguments, it checks to see if the system was shutdown properly. If the system
was shutdown properly, it simply returns. If it determines that the file system is possibly in an inconsistent
state due to improper system shutdown (i.e., not all memory-resident file system data structures were written
to disk before shutdown), it will begin a careful check of the file system. The fsck command is able to repair
most file system damage it detects; however, in those rare cases when it cannot repair a file, it “moves”
the file to the system directory lost+found. Files in this directory are inaccessible to all users except the
TSP. When fsck has completed repairing the file system, it simply returns and the next command in /etc/rc
is executed. If the damage is such that fsck cannot repair it and cannot move the damaged file(s) to the
directory lost+found, then the boot is aborted.

2.9.5 Covert Channel Analysis

TIS has identified covert channels of three different types: resource exhaustion channels, event count channels,
and MAC conflict channels.

Resource exhaustion channels are covert storage channels that result from the ability of a process to detect
the exhaustion of some finite shared resource. For example, in Trusted XENIX a single system table shared
by all processes identifies all open files. Since this table is limited in size, a higher-level process could open
enough files to fill the table. When the table is full, processes at all levels receive an error message to that
effect and are prevented from opening requested files.

Event count channels are covert storage channels that result when a process is able to sense a change in
a globally shared system resource which is caused by another process. For example, the total amount of
available disk space in the system is available to processes at any level. This enables a process at a higher
level to signal a lower level process by allocating and releasing disk space.

MAC conflict channels are covert storage channels that are caused by the conflict between the standard
XENIX interface and the mandatory security policy being added with Trusted XENIX. For example, the
standard XENIX interface for rmdir will allow deletion only of empty directories (those that contain no links
to other directories or files). The mandatory security policy of Trusted XENIX requires the current process
level to be equal to the level of the directory containing the directory that one desires to delete. This creates
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a conflict which results in a covert storage channel when one attempts to delete an upgraded directory, since
the lower level process will be able to sense whether the upgraded directory is empty.

TIS performed a thorough analysis of the code3® to identify covert storage channels. This analysis is described
in the vendor’s report [CCAID]. The analysis is based on systematically finding all of the resources in
the system and identifying all methods of accessing those resources. This information is then analyzed
to determine whether it describes any method capable of passing information in violation of the system’s
mandatory security policy. TIS’s analysis includes following the calling tree of every kernel call and identifying
the information flow within the kernel via parameter and variable tracing. By first defining the information
flow properties of every C language statement, this analysis is designed to find every covert storage channel.

TIS identified 18 resource exhaustion channels, eight event count channels, and five MAC conflict channels.
For each identified channel, an exploitation scenario was developed, and a maximum channel signalling rate
calculated, assuming that primitive operations used in the exploitation of the channel are executed on the
hardware model with the shortest execution times. In developing these scenarios, TIS made assumptions
(about coding schemes and signalling strategies) that the team feels truly maximize the channel rates. The
strategies used in estimating and then reducing the bandwidths of the covert channels is given in a vendor

report [CCABW].

TIS has eliminated some of the event count channels found during the analysis by use of randomization in
assigning values to variables that are globally visible (such as the pid), or by establishing separate number
spaces for distinct security levels. TIS has inserted delays into some of the system calls which are used in
the exploitation of some channels, and has set the delays to values such that the rates of all channels are less
than ten bits per second.?”

36 This analysis is based on analysis of an earlier version of the kernel, which was conducted by IBM. An incremental additional
analysis was conducted by both vendors.

37For one pair of channels, for which the maximum rate calculation is about 25 bits per second, the team has accepted
the vendor’s argument that the calculation is based on unrealistic extremes, and that a sustainable rate using either of these
channels is less than ten bits per second.
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Evaluation as a B2 System

3.1 Discretionary Access Control

Requirement

The TCB shall define and control access between named users and named objects (e.g., files and programs)
in the ADP system. The enforcement mechanism (e.g., access control lists) shall allow users to specify
and control sharing of those objects, and shall provide controls to limit propagation of access rights. The
discretionary access control mechanism shall, either by explicit user action or by default, provide that objects
are protected from unauthorized access. These access controls shall be capable of specifying, for each named
object, a list of named individuals and a list of groups of named individuals with their respective modes
of access to that object. Furthermore, for each such named object, it shall be possible to specify a list of
named individuals and a list of groups of named individuals for which no access to the object is to be given.
Access permission to an object by users not already possessing access permission shall only be assigned by
authorized users.

Applicable Features

The Trusted XENIX TCB defines and controls access between named users and named objects by using two
enforcement mechanisms: ACLs and protection bits (which provide self/group/public control). The System
Overview section on DAC (see section 2.8.1) provides a detailed description of these mechanisms and the
algorithm applied to their use. The protection-bit mechanism allows the creator of an object to specify
read, write, and execute accesses for him/herself, system-defined groups of users, and everyone else in the
system. While specifying access to the granularity of a single user is possible using this mechanism, a far
more convenient method is provided by the ACL mechanism. In addition to the read, write, and execute
accesses which the protection-bit mechanism provides, ACLs allow a user to specifically grant “no access”
to an individual user, group, or everyone.

The system-wide protection-bit default grants access only to the object creator and privileged processes.
Users may override the system default by creating a protection-bit default for themselves. No method of
specifying a default ACL is provided. Rather, a user can create an ACL by using the acl mk command, which
duplicates in an ACL file the accesses specified in the object’s protection bits. When an ACL is created for
an object, the nine low-order protection bits for that object are set to zero.

Access permission to an object by users not already possessing access permission can be assigned only by
the object’s owner.
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Conclusion

Trusted XENIX satisfies the B2 Discretionary Access Control requirement.

Additional Requirement (B3)

The following changes are made in this requirement at the B3 level:

CHANGE: The enforcement mechanism (e.g., access control lists) shall allow users to specify and control
sharing of those objects. These access controls shall be capable of specifying, for each named object, a
list of named individuals and a list of groups of named individuals with their respective modes
of access to that object.

ADD: Furthermore, for each such named object, it shall be possible to specify a list of named individuals
and a list of groups of named individuals for which no access to the object is to be given.

Applicable Features

Trusted XENIX’s ACL mechanism allows the creator of an object to grant access to named individuals and
any number of system-defined groups of individuals, and to specifically deny access to named individuals
and named groups.

Conclusion

Trusted XENIX satisfies the B3 Discretionary Access Control requirement.’

3.2 Object Reuse

Requirement

All authorizations to the information contained within a storage object shall be revoked prior to initial
assignment, allocation or reallocation to a subject from the TCB’s pool of unused storage objects. No
information, including encrypted representations of information, produced by a prior subject’s actions is to
be available to any subject that obtains access to an object that has been released back to the system.

Applicable Features

Trusted XENIX ensures that all authorizations to information contained within its storage objects, as well as
system memory, are revoked prior to initial assignment, allocation, or reallocation to a subject. The Object

1 Although Trusted XENIX satisfies this requirement at the B3 level, it does not satisfy the assurance requirements above
its rated level.
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Reuse Implementation section of the System Overview (section 2.8.5) provides a detailed description of the
mechanisms which provide this assurance.

For all file-type objects (user files, directories, pipes, etc.), a zero-length file is created (for directories and
pipes, the kernel performs some initialization), and any attempt to read past the end of the file fails. Reading
the file produces the initialized data, or an end-of-file indicator for a zero-length file. As data are written
into the file, the kernel allocates individual disk blocks as needed and clear the buffer used to store the data
to be written into the block. For shared memory segments, upon allocation and as the area is extended,
the kernel overwrites the allocated area with zeros. Devices are accessed only by TPs or the kernel (except
for terminals), both of which are trusted to clear device buffers prior to reuse. The terminal is the only
device that is directly accessible to untrusted subjects, and the terminal driver (i.e., init) clears all data from
terminal buffers between successive users. init, stuiit, server-conn, and client_daemon ensure the server- and
client-end serial lines have been reset to a known, fixed state and that all buffers have been cleared between
connections.

Process memory is overwritten at process creation, thus destroying existing data and ensuring that no data
stored in memory by the prior subject’s actions are available to the new subject. Any attempt to read
past a process boundary (or descriptor boundary) will result in an error. In the cases where memory is not
automatically cleared, the kernel ensures that the data in the memory are overwritten with zeros on process
reinitiation.

Video devices and the console keyboard are restored to a known, fixed state when the device is released (i.e.,
the console user logs out), and all related buffers are purged.

Conclusion

Trusted XENIX satisfies the B2 Object Reuse requirement.

3.3 Labels

Requirement

Sensitivity labels associated with each ADP system resource (e.g., subject, storage object, ROM) that is
directly or indirectly accessible by subjects external to the TCB shall be maintained by the TCB. These
labels shall be used as the basis for mandatory access control decisions. In order to import non-labeled data,
the TCB shall request and receive from an authorized user the security level of the data, and all such actions

shall be auditable by the TCB.

Applicable Features

The use of labels in Trusted XENIX is fully described in the System Overview section of this report (see
section 2.8.2, page 69). All subjects and objects in Trusted XENIX are assigned sensitivity labels, which
reflect the security level of the subject or object. These are used as the basis for all MAC decisions. star
will not import non-labeled information, so no one except the TSP using either tar or the DOS commands
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can import non-labeled data. The TSP is responsible for labeling the data when imported in this manner.
All data imported via the STU-IIT connection is assigned the label of the modem device line. The modem
device line label is equal to the user’s login level and the classification of the modem device line label is equal
to the negotiated key level.

Conclusion

Trusted XENIX satisfies the B2 Labels requirement.

3.4 Label Integrity

Requirement

Sensitivity labels shall accurately represent security levels of the specific subjects or objects with which they
are associated. When exported by the TCB, sensitivity labels shall accurately and unambiguously represent
the internal labels and shall be associated with the information being exported.

Applicable Features

For subjects, the login TP sets the CPL and the terminal level at log in time (see section 2.7.1, page 56).
The user can change the CPL only by logging out and reaccomplishing log in.

Security labels are associated with inodes (file system objects), ipc objects, and processes by making an
entry in the corresponding structure for each. For example, the CPL of a process is stored in the proc
structure within the proc table. These labels are accessible only through kernel or trusted processes and are
therefore protected through the use of the protection mechanisms discussed in the Trusted Process section
of the overview (see section 2.6.6, page 34).

All created objects, except upgraded directories, inherit the level of the creating process. New files may be
installed only in a directory that has the same level as the creating process. New directories can be created
at a level equal to or greater than the level of the parent directory using the mkdir -s command. The child
process resulting from a fork inherits the parent’s security level. The ezec system call does not change the

CPL.
Labels exported by the star TP are stored with the archived file.

All data imported via the STU-IIT connection is assigned the label of the modem device line. The modem
device line label is equal to the user’s login level and the classification of the modem device line label is
equal to the negotiated key level. The s_clearance and s_category tables on the Client and Server machines
must be set up so that the external representation of the security labels are equivalent although the internal
representations may differ. The TFM describes this situation.
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Conclusion

Trusted XENIX satisfies the B2 Label Integrity requirement.

3.5 Exportation of Labeled Information

Requirement

The TCB shall designate each communication channel and 1/O device as either single-level or multilevel.
Any change in this designation shall be done manually and shall be auditable by the TCB. The TCB
shall maintain and be able to audit any change in the current security level or levels associated with a
communication channel or I/O device.

Applicable Features

Hard disks, floppy diskettes, cartridge tapes, and printers are implemented as multilevel devices in Trusted
XENIX. The range of security levels allowed for a particular drive or printer is given in a specific entry for
that device in the system security file /etc/security/s_device. This range is settable only by the SSA and
only through the SSA’s restricted trusted shell. Any change in these SSA defined ranges is auditable.

Terminals in Trusted XENIX are implemented as single-level devices. The security level of the terminal is
realized as the security label of its inode (actually, that of the special file representing the terminal) and
cannot be set, handled, or otherwise interpreted by the terminal driver.

A terminal operates at a single level throughout a user session. This level can be changed only by the user
physically logging out and back in, creating a new session, and causing an audit record to be generated.
This level is determined by the trusted process login at log in time. A user may query the system at any
time during the session to cause the system to display the current session level. SSA definition of a terminal
minimum and maximum levels is the same as that described for printers, and the levels specified are stored
in the same security table.

Conclusion

Trusted XENIX satisfies the B2 Exportation of Labeled Information requirement.

3.6 Exportation to Multilevel Devices

Requirement

When the TCB exports an object to a multilevel I/O device, the sensitivity label associated with that object
shall also be exported and shall reside on the same physical medium as the exported information and shall
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be in the same form (i.e., machine-readable or human-readable form). When the TCB exports or imports
an object over a multilevel communication channel, the protocol used on that channel shall provide for the
unambiguous pairing between the sensitivity labels and the associated information that is sent or received.

Applicable Features

Trusted XENIX provides two forms of output to multilevel devices: printer output and files archived to or
recovered from diskette or cartridge tapes. Both of these are described in detail in the System Overview (see
section 2.8.7, page 80 and section 2.8.8, page 81). Exportation requirements for the printer subsystem are
discussed in section 3.8, page 95.

Except for the SSA; all users must use the star TP to access the diskette drives (/dev/fd0 and /dev/fd1)
and the cartridge tape drive (/dev/wtr). Since the device special files are owned by group remmed, they are
only accessible to the SSA through star. The TSP may also access the device special files through tar or
direct copy routines.

Conclusion

Trusted XENIX satisfies the B2 Exportation to Multilevel Devices requirement.

3.7 Exportation to Single-Level Devices

Requirement

Single-level I/O devices and single-level communication channels are not required to maintain the sensitivity
labels of the information they process. However, the TCB shall include a mechanism by which the TCB and
an authorized user can reliably communicate to designate the single security level of information imported
or exported via single-level communication channels or I/O devices.

Applicable Features

Terminals in Trusted XENIX are implemented as single level devices. The terminal may be logically viewed
as consisting of the physical terminal,? the physical port adapter, the terminal special file, and the associated
line discipline module. The security level of the terminal is realized as the security label of the terminal
special file’s inode. This label is initially set to the appropriate level at log in time by the trusted process
login. The terminal is not trusted to set, handle, or otherwise interpret labels on its own. Access mediation
to the terminal is performed by the access mediation module within the kernel. In the case of a client
Trusted XENIX machine acting as the user’s terminal, the “terminal” actually does interpret labels and
perform access mediation. However, the architecture of Trusted XENIX ensures that the process acting on

?In the case of a STU-III connection, the STU-III pair and possibly even the client Trusted XENIX machine are logically
considered part of the physical terminal.
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the client end is operating under the same policy constraints as the process on the server end and that they
are operating at the same single sensitivity label.

Minimum and maximum device labels for terminals are settable only by the SSA and are used to constrain
the terminal (device) level at log in. The terminal level can be changed only by logging out and back in.
This creates a new session and generates an audit record.

Conclusion

Trusted XENIX satisfies the B2 Exportation to Single-Level Devices requirement.

3.8 Labeling Human-Readable Output

Requirement

The ADP system administrator shall be able to specify the printable label names associated with exported
sensitivity labels. The TCB shall mark the beginning and end of all human-readable, paged, hardcopy output
(e.g., line printer output) with human-readable sensitivity labels that properly 3 represent the sensitivity of
the output. The TCB shall, by default, mark the top and bottom of each page of human-readable, paged,
hardcopy output (e.g., line printer output) with human-readable sensitivity labels that properly represent
the overall sensitivity of the output or that properly represent the sensitivity of the information on the page.
The TCB shall, by default and in an appropriate manner, mark other forms of human-readable output (e.g.,
maps, graphics) with human-readable sensitivity labels that properly represent the sensitivity of the output.
Any override of these marking defaults shall be auditable by the TCB.

Applicable Features

The operation of the Trusted XENIX printer spooler subsystem is described earlier in this report (see
section 2.8.8, page 81). The SSA can specify the human-readable (printable) labels that correspond to the
machine-readable sensitivity labels associated with exported files. This mapping is specified by the SSA
in the system files /eic/security/s_clearance and /etc/security/s_category. The printer spooler subsystem
schedules the individual printers within the Trusted XENIX system (having sole access to their individual
device drivers), controls pagination of output files, inserts beginning and ending banner pages, and labels
the top and bottom of each intermediate page with the CPL of the job requester. (The CPL dominates
the actual sensitivity of the printed file.) Labeling of banner pages cannot be overridden. Labels placed
at the top and bottom of each intermediate page can be overridden using an option of the lp command.
Intermediate page labeling is enabled by default. All print requests are auditable. Disabling of intermediate
page labeling is also auditable.

3The hierarchical classification component in human-readable sensitivity labels shall be equal to the greatest hierarchical
classification of any of the information in the output that the labels refer to; the non-hierarchical category component shall
include all of the non-hierarchical categories of the information in the output the labels refer to, but no other non-hierarchical
categories.
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Conclusion

Trusted XENIX satisfies the B2 Labeling Human-Readable Output requirement.

3.9 Mandatory Access Control

Requirement

The TCB shall enforce a mandatory access control policy over all resources (i.e., subjects, storage objects,
and I/O devices) that are directly or indirectly accessible by subjects external to the TCB. These subjects
and objects shall be assigned sensitivity labels that are a combination of hierarchical classification levels and
non-hierarchical categories, and the labels shall be used as the basis for mandatory access control decisions.
The TCB shall be able to support two or more such security levels. The following requirements shall hold for
all accesses between all subjects external to the TCB and all objects directly or indirectly accessible by these
subjects: A subject can read an object only if the hierarchical classification in the subject’s security level is
greater than or equal to the hierarchical classification in the object’s security level and the non-hierarchical
categories in the subject’s security level include all the non-hierarchical categories in the object’s security
level. A subject can write an object only if the hierarchical classification in the subject’s security level is
less than or equal to the hierarchical classification in the object’s security level and all the non-hierarchical
categories in the subject’s security level are included in the non-hierarchical categories in the object’s security
level. Identification and authentication data shall be used by the TCB to authenticate the user’s identity
and to ensure that the security level and authorization of subjects external to the TCB that may be created
to act on behalf of the individual user are dominated by the clearance and authorization of that user.

Applicable Features

The TCB enforces a MAC policy (as described in TIS’s Interpretation of the Bell and LaPadula Model for
Trusted XENIX [INTP]) over all subjects, objects, and I/O devices that are directly or indirectly accessible
by subjects external to the TCB. The System Overview section on Mandatory Access Control gives a detailed
description of the MAC policy enforced by Trusted XENIX (see section 2.8.2).

To enforce this policy, all subjects and objects are assigned sensitivity labels that are a combination of one
of up to 255 (plus the WILDCARD) hierarchical clearance or classification levels and a set of up to 64 non-
hierarchical categories. Trusted XENIX therefore exceeds both the required (2 or more) and suggested (16
or more) numbers of hierarchical levels and meets the suggested number of non-hierarchical categories (64
or more), as specified in “A Guideline on Configuring Mandatory Access Control Features” in the TCSEC.
The sensitivity labels are used as the basis for MAC decisions. The rules for MAC, as described in TIS’s
interpretation [INTP], meet the access requirements specified in the B2 Mandatory Access Control criterion
above for accesses between all subjects external to the TCB and all objects directly or indirectly accessible
by these subjects. Identification and authentication data are used by the TCB to authenticate the user’s
identity and to ensure that the security level and authorization of subjects created (external to the TCB) to
act on behalf of the user are dominated by the clearance and authorization of that user.

Note that the client-server architecture of Trusted XENIX ensures that processes connected to the serial
devices at each end of a connection operate at the same sensitivity label and under the same MAC constraints.
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Conclusion

Trusted XENIX satisfies the B2 Mandatory Access Control requirement.

3.10 Subject Sensitivity Levels

Requirement

The TCB shall immediately notify a terminal user of each change in the security level associated with that
user during an interactive session. A terminal user shall be able to query the TCB as desired for a display
of the subject’s complete sensitivity label.

Applicable Features

Immediately following identification and authentication, the login TP sets the CPL for the user session. The
CPL is composed of the hierarchical clearance level and non-hierarchical category set and is displayed on
the terminal screen at the time of a successful log in. It will remain the user’s current security level and
may not change within a single Trusted XENIX session. Change of security level can be accomplished only
by logging out and reaccomplishing log in. At any time during an active Trusted XENIX session, the user
may query the system for the CPL using the c_attr command. The system will respond with a display of
the user’s complete CPL.

Conclusion

Trusted XENIX satisfies the B2 Subject Sensitivity Levels requirement.

3.11 Device Labels

Requirement

The TCB shall support the assignment of minimum and maximum security levels to all attached physical
devices. These security levels shall be used by the TCB to enforce constraints imposed by the physical
environments in which the devices are located.
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Applicable Features

Trusted XENIX provides user interfaces to four types of devices—printers, terminals, diskette drives and
cartridge drives. The SSA defines the allowable range for device levels at system generation time through
specification of data structures located within the system file /etc/security/s_device. The SSA assigns a
maximum and minimum level for each file system and each terminal in the system (TMaxL, TMinL). The
SSA specifies the security level range of devices by setting PDMinL. and PDMaxL or SDMinL. and SDMaxL.
There is no effective distinction between private and shared devices.* PDMaxL, PDMinL, SDMaxL and
SDMinL must be specified for each individual printer in the system. Printer output is constrained by the
TCB so that the CPL of the job requester must be within the range of security levels assigned to the printer
by the SSA.

Terminal Maximum Level (TMaxL) is used by the login process to constrain the CPL. The CPL must be
dominated by TMaxL. The Terminal Minimum Level (TMinL) is used only to constrain the user and not
the level of the process (CPL) run at the terminal in question. A user whose maximum level (UML) exceeds
TMinL and whose minimum level is less than TMinL, is permitted to log in at a level below TMinL (all
other checks being met).

Export to diskette and cartridge drives is accomplished through star. The star TP ensures that the security
levels of exported files fall within the range set for the diskette or cartridge drive.

Conclusion

Trusted XENIX satisfies the B2 Device Labels requirement.

3.12 Identification and Authentication

Requirement

The TCB shall require users to identify themselves to it before beginning to perform any other actions
that the TCB is expected to mediate. Furthermore, the TCB shall maintain authentication data that
includes information for verifying the identity of individual users (e.g., passwords) as well as information for
determining the clearance and authorizations of individual users. This data shall be used by the TCB to
authenticate the user’s identity and to ensure that the security level and authorizations of subjects external
to the TCB that may be created to act on behalf of the individual user are dominated by the clearance and
authorization of that user. The TCB shall protect authentication data so that it cannot be accessed by any
unauthorized user. The TCB shall be able to enforce individual accountability by providing the capability to
uniquely identify each individual ADP system user. The TCB shall also provide the capability of associating
this identity with all auditable actions taken by that individual.

4 There was a difference between shared and private in earlier versions.
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Applicable Features

The login trusted process of Trusted XENIX is responsible for the identification and authentication of
users before they are allowed to use the system. This interface allows users to identify themselves to the
system by supplying a user name and password. Users may provide a group name and a security label (or
be given default values) that allows them certain privileges. This procedure is described in the Security
Features User’s Guide [SFUG]. Note that in the client-server architecture, server-conn provides all of the
identification information for a user (including userid, sensistivity label, and group), except for the user’s
password. In this case, the TCB prompts for the password when needed and ensures that it does not go
outside the TCB boundary.

The password field in the file /etc/passwd (the standard UNIX password file) has been removed in Trusted
XENIX. In addition, group passwords and listed users have been removed from the group file. The passwords
are stored in encrypted form in the user security profile, /etc/security/s_user. This profile is indirectly
accessible only by the SSA. No user can directly access this profile.

Passwords are user chosen. Each password must have at least six characters. If there are more than eight
characters, only the first eight are significant, and they must contain at least two alphabetic characters
(upper or lower case letters) and at least one numeric or special character. Each password must differ from
the user’s log in name and any reverse or circular shift of that log in name. New passwords must differ from
the old by at least three characters. Finally, no character in the new password can be repeated more than
once in sequence. For comparison purposes, an upper case letter and its corresponding lower case letter are
equivalent. However, when an authentication check is made, it is case sensitive.

An authentication and authorization profile for each user is maintained by the TCB to grant access to
various objects and to determine the security level of the subjects created by the user. This is accomplished
by maintaining a user maximum security level and a group maximum security level. The UML comprises the
user maximum clearance and the complete set of categories the user is authorized to access. Correspondingly,
the GML defines maximum clearance and largest set of categories for a group of users. The user must
specify a group name at log in or be assigned a default group with its attendant GML. The protection of
this authorization data is achieved by requiring that all such data be part of the TCB and available only to
the system security administrator and the administrator’s trusted processes.

Each user is identified by a user ID and the associated uid, and a group ID and the associated gid. The
uid and gid are both non-reusable identifiers. When a user or group is removed from the system, the uid
and gid are not reassigned, thus preventing unauthorized access to any residual objects left by the removed
user/group. At log in an audit record that associates the uid and gid of the user with a character string
representing the userid and groupid is generated. Whenever a process is created, an audit record that
associates a process ID (pid) with the uid and gid of the creator is generated. When that process performs
an auditable event, the pid is included in the generated audit record. This provides a unique identity for all
auditable events.

Conclusion

Trusted XENIX satisfies the B2 Identification and Authentication requirement.
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3.13 Audit

Requirement

The TCB shall be able to create, maintain, and protect from modification or unauthorized access or de-
struction an audit trail of accesses to the objects it protects. The audit data shall be protected by the TCB
so that read access to it is limited to those who are authorized for audit data. The TCB shall be able to
record the following types of events: use of identification and authentication mechanisms, introduction of
objects into a user’s address space (e.g., file open, program initiation), deletion of objects, actions taken by
computer operators and system administrators and/or system security officers, and other security relevant
events. The TCB shall also be able to audit any override of human-readable output markings. For each
recorded event, the audit record shall identify: date and time of the event, user, type of event, and success or
failure of the event. For identification/authentication events the origin of request (e.g., terminal ID) shall be
included in the audit record. For events that introduce an object into a user’s address space and for object
deletion events the audit record shall include the name of the object and the object’s security level. The
ADP system administrator shall be able to selectively audit the actions of any one or more users based on
individual identity and/or object security level. The TCB shall be able to audit the identified events that
may be used in the exploitation of covert storage channels.

Applicable Features

After the initial set-up has been performed by the TSP, auditing in Trusted XENIX is invoked through the
actions of the Auditor. An Auditor is a member of the privileged group, audit, who has the ability to perform
special auditing functions through the trusted shell, auditsh. Auditing can be invoked in one of two ways:
either through the Auditor’s logging in using the trusted shell, or at system startup by the TSP’s placing
the auditsh command in the /eic/rc startup file.

Auditing is implemented by assigning audit levels to users and kernel calls (see section 2.8.4 on page 76).
Only the Auditor has the capability to set and change the audit levels.

The following three events must be audited in order for the audit post-processor to function properly:
1. Entry of the ezit system call.
Auditing of this event allows the post-processor to know when a process has ended.

2. Exit of the fork system call.
Auditing of this event allows the post-processor to know the parent process of a new process.

3. Internal and exit events of the chdir system call.
Auditing of these events allows the post-processor to track the current working directory state of each
process. Thus the post-processor can print full pathnames instead of relative path-names.

Additionally, the Auditor has the capability to specify auditing of the following events:

e System initialization actions
e All log in activity
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Change of password

Accumulations of denied entry attempts
Introduction of objects into address space
Creation/deletion of subjects and objects

SSA, AA, SO, and Auditor actions

Denied access to objects and interprocess signals
Access privilege distribution and revocation
Overriding of page labels

Every audit record contains a fixed part and an event-dependent part. The fixed part of the record contains:

Record sequence number

Date and time

Type of event

Error number

Return values

Subject information (real and effective uid and gid, and the process ID)
Security level of process or object

The event-dependent part may contain:

Pathname of the object
Parameters of the call

Inode and file system numbers
Text of Trusted Process message

Trusted XENIX provides an audit reduction capability which allows the Auditor to selectively retrieve data
based on the following:

uid and gid

object identity

event type

pid

object/subject security level
user security level

The print function of the audit command allows for selection of audit records by uid and gid. Selectivity based
on other items can be achieved through the combined use of the audit command and the grep command.

When the audit files are swapped, a message is sent to the console. A warning is generated and sent to
the console if the amount of space requested by the auditor for a new audit file can not be allocated (the
remaining space is, however, allocated). Once the file system becomes full and audit can no longer allocate
space, then the system will shut down.

All covert channels identified by the vendor are exploited through kernel calls. As all kernel calls are
auditable, events which may be used in the exploitation of covert channels are auditable.
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Conclusion

Trusted XENIX satisfies the B2 Audit requirement.

3.14 Trusted Path

Requirement

The TCB shall support a trusted communication path between itself and users for initial login and authen-
tication. Communications via this path shall be initiated exclusively by a user.

Applicable Features

The Secure Attention Key (SAK) mechanism provides a trusted path to the TCB. The SAK mechanism
is implemented as two consecutive control-Z characters separated by less than one second. The TCB
inspects all keystrokes before they are given to a process, thereby preventing the SAK mechanism from
being intercepted by an intruder process. Once a trusted path is established, the user may proceed with the
log in described in section 3.12 on page 99.

Use of the trusted path also revokes all access to the terminal from all processes, thus preventing a process
from spoofing the trusted login process. Also, use of the trusted path while a user is logged in invokes the
trusted shell and causes the TCB to identify itself to the user. Thus, if the logout process were spoofed,
a subsequent invocation of the trusted path would result in this identification, alerting the user. While in
the trusted shell, the user can safely invoke processes to do such things as change passwords, change file
attributes and backup files.

The client-server architecture ensures a trusted path exists for the server login. Subsequently, a user must
invoke the trusted shell on the client machine and then select the client-tpath option to invoke a trusted
shell on the server machine. This architecture prevents untrusted processes from invoking the trusted path
functions without human intervention.

Conclusion

Trusted XENIX satisfies the B2 Trusted Path requirement.

Additional Requirement (B3)

CHANGE: The TCB shall support a trusted communication path between itself and users for use when
a positive TCB-to-user connection is required (e.g., log in, change subject security level).
Communications via this trusted path shall be activated exclusively by a user or the TCB and shall
be logically isolated and unmistakably distinguishable from other paths.
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Applicable Features

When the trusted path is invoked, a message is issued distinguishing this path from others, so that the trusted
path is identified to the user. Trusted XENIX requires that security relevant actions be made through the
trusted path. The commands implementing these actions will fail if the invoking user is not acting through
the trusted path. In addition to each user having a trusted path, each special role (e.g., SSA) has a restricted
trusted shell. This provides extra protection for the trusted processes used by these roles. The user activates
the trusted path with two consecutive control-Z characters typed within one second. This results in an
entry in a special file and a process attribute indicating a special state, checked by TPs before performing
restricted actions. Users are instructed in the Security Features User’s Guide (SFUG) to log in using the
trusted path, and can not thereafter dynamically change sensitivity levels.

The client-server architecture makes no exceptions to the trusted path requirements included above.

Conclusion

Trusted XENIX satisfies the additional provisions of the B3 Trusted Path requirement.?

3.15 System Architecture

Requirement

The TCB shall maintain a domain for its own execution that protects it from external interference or
tampering (e.g., by modification of its code or data structures). The TCB shall maintain process isolation
through the provision of distinct address spaces under its control. The TCB shall be internally structured
into well-defined largely independent modules. It shall make effective use of available hardware to separate
those elements that are protection-critical from those that are not. The TCB modules shall be designed such
that the principle of least privilege is enforced. Features in hardware, such as segmentation, shall be used to
support logically distinct storage objects with separate attributes (namely: readable, writeable). The user
interface to the TCB shall be completely defined and all elements of the TCB identified.

Applicable Features

The Trusted XENIX TCB (see section 2.4, page 8) is protected from external interference in differing ways
depending on the part of the TCB in question. The “domain” of the TCB is actually a set of isolated
domains: the kernel and the set of individual address spaces of the trusted processes. Kernel software is
protected by the hardware privilege level mechanism: its code and data are accessible only when running
at privilege level zero, and kernel software can be invoked only at a single well-defined entry point. The
code run by trusted processes is protected by DAC on program files and by process isolation. The dynamic
structures of trusted processes are protected by process isolation. Like the kernel, each trusted process may
be invoked only by calling its well-defined entry point. Various restrictions (see section 2.6.6, page 34) are

5 Although Trusted XENIX satisfies this requirement at the B3 level, it does not satisfy the assurance requirements above
its rated level.
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implemented to guarantee that an untrusted process cannot interfere with the operation of a trusted process.
The data (files and directories) used by trusted processes are all protected by DAC, and some are protected
by explicit use of MAC as well. Uncontrolled access to devices and memory is prohibited by DAC on the
appropriate device drivers.

Process isolation is provided by giving each process an independent address space, both for directly accessible
memory and for objects manipulated by system calls. Some process context is inherited at process creation
(fork) but the information retained by each process cannot be further affected by actions of the other.
Communication is possible only if both processes subsequently elect to share objects or use existing shared
objects (such as pipes in existence at process creation). The kill system call can be used to signal only
between processes with matching real or effective uids. A simple form of communication from child to parent
process is provided by the child’s completion code, but since the child of an untrusted (unprivileged) process
has the same label as its parent, this is permitted by the MAC policy.

The Intel 80286 or 80386 privilege level and call gate mechanisms are used effectively to separate kernel code
and data from all non-kernel process data. These hardware features are also used to achieve process isolation,
thereby isolating each trusted process component of the TCB from the kernel and all other processes. A
single Intel 80286 or 80386 call gate segment is used to mediate all system call invocations of the kernel. The
code for each individual system call is responsible for making all access and privilege checks. Hardware access
verification instructions are used by system calls to ensure the accessibility of their user-supplied arguments.
A well-enforced programming discipline (see section 2.6.5, page 31) ensures that this mechanism is used
consistently and protects against errors due to multiple references to user parameters. Trusted XENIX uses
two of the four Intel 80286 or 80386 privilege levels (privilege levels one and two are unused).

The least privilege principle is enforced both within the Trusted XENIX TCB and in the administrative
interfaces (see section 3.20, page 108). Within the TCB trusted processes are granted only the minimal
privileges required to perform their functions and are designed so that these privileges are available only
when necessary, by use of “privilege bracketing.”

The kernel is divided in packages of source code containing C functions and data declarations. Each package
is a file that has a “.c” suffix, and which contains various C compiler directives to allow collections of global
data, type, and structure declarations to be included (i.e., as if they were declared in the source file itself)
in the .c file. Each of these packages is a module. The question of whether a software system based on
UNIX can meet the TCSEC class B2 assurance requirements has prompted considerable discussion. In the
opinion of one study [SIBE], “bringing an existing system to the B2 level is likely to be at least as difficult
as building a brand new system.” Considerable effort was expended by TIS and IBM in restructuring
the system, modifying interfaces, reducing the use of the .h files (#include files), and establishing general
disciplines for manipulating common structures within the kernel. For the TPs, the vendors adopted a generic
program structure (which includes verifying the execution environment of each TP on entry), established
a mechanism for reducing the use of privileges, and enforced general programming practices for improving
code readability.

An 80x86’s segmented address space is used to isolate memory belonging to one process from that belonging
to another, and to provide read and read/write protection on explicitly shared memory segments. However,
because the UNIX kernel and process model is designed around the concept of a linear address space and
a two-state protection architecture, code and data structures are not designed to be kept in independent
segments. There is no significant use of segmentation within the kernel or within individual trusted pro-
cesses, save for that minimally required to isolate processes, separate code from data, and accommodate the
processors’ segment size of 65,536 bytes. As described in section 2.6.4 on page 29, the limited segment size
requires that large programs be organized to occupy multiple segments with identical security attributes,
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solely because 65,536 bytes is insufficient for many programs.

The Descriptive Top Level Specification (see section 3.18, page 107) provides a description of the user
interface to the TCB, which includes the system calls, the user-invocable trusted processes, the trusted shell
commands available through the trusted path, and the Intel 80286 or 80386 instruction set. The design
documentation (see section 3.25, page 112) for the kernel and the trusted processes identifies all the TCB
components and describes their interfaces.

Conclusion

Trusted XENIX satisfies the B2 System Architecture requirement.

3.16 System Integrity

Requirement

Hardware and/or software features shall be provided that can be used to periodically validate the correct
operation of the on-site hardware and firmware elements of the TCB.

Applicable Features

As described in “Hardware Diagnostics,” page 21, there are a number of diagnostic tests available for Trusted
XENIX.

Each machine provides a set of power-on self-tests which test some minimal functionality of the hardware.
Additionally, most of the machines comes with a set of Advanced Diagnostic Tests which provide more
detailed testing, specifically of the peripherals.

Trusted XENIX also comes with a set of TIS created tests that are designed to test all of the security critical
mechanisms of the base CPUs, including the ring mechanism, segmentation, control transfers, privileged
instructions, and interrupt handling.

Finally, TIS has identified a utility, Check,/It, that provides an extensive set of functional peripheral tests.
This set is necessary to fill in both known and unknown deficiencies in the POST and advanced diagnostic
test provided with the non-IBM hardware platforms.

Conclusion

Trusted XENIX satisfies the B2 System Integrity requirement.
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3.17 Security Testing

Requirement

The security mechanisms of the ADP system shall be tested and found to work as claimed in the system
documentation. A team of individuals who thoroughly understand the specific implementation of the TCB
shall subject its design documentation, source code, and object code to thorough analysis and testing. Their
objectives shall be: to uncover all design and implementation flaws that would permit a subject external
to the TCB to read, change, or delete data normally denied under the mandatory or discretionary security
policy enforced by the TCB; as well as to assure that no subject (without authorization to do so) is able
to cause the TCB to enter a state such that it is unable to respond to communications initiated by other
users. The TCB shall be found relatively resistant to penetration. All discovered flaws shall be corrected
and the TCB retested to demonstrate that they have been eliminated and that new flaws have not been
introduced. Testing shall demonstrate that the TCB implementation is consistent with the descriptive top-
level specification.

Applicable Features

The vendor conducted functional testing at TIS and found the system to work as claimed in the system
documentation.

The penetration effort was conducted by a NSA evaluators and a combined TIS/NSA evaluation team. Tt
would be difficult to estimate the total man-power spent on this effort overall. The TIS/NSA evaluation
team spent a half-day or so developing hypothesis in a group and a day running tests against the hypothesis.
TIS spent additional time after this to run tests for some outstanding hypothesis (e.g., ones we didn’t have
time or information on-hand to investigate). But in addition to this, NSA had two labs set up internally and
had been actively working with the STU-III related modifications as they became available for approximately
six months.

Activities during testing included reviewing the results of the activities performed during the penetration
testing effort for Trusted XENIX versions 2.0 and 3.0, studying both documentation and code, generat-
ing hypotheses, and testing flaw hypotheses. The hardware tested consisted of a subset of the evaluated
configuration.

The overall penetration effort was based on the flaw hypothesis method, whereby the penetration team meets
and proposes possible system flaws. The hypotheses were assigned to individuals and were recorded in a
log which was updated as progress was made and conclusions drawn. Each proposal was investigated, by
thought experiment, documentation study, code study, or by coding a test scenario to exploit the flaw.

No flaws were identified for Trusted XENIX version 4.0. However, it should be noted that a flaw was
identified in the previous versions and was fixed in version 4.0.

Conclusion

Trusted XENIX satisfies the B2 Security Testing requirement.
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3.18 Design Specification and Verification

Requirement

A formal model of the security policy supported by the TCB shall be maintained over the life cycle of the
ADP system that is proven consistent with its axioms. A descriptive top-level specification (DTLS) of the
TCB shall be maintained that completely and accurately describes the TCB in terms of exceptions, error
messages, and effects. It shall be shown to be an accurate description of the TCB interface.

Applicable Features

The Bell and LaPadula security model was interpreted for Trusted XENIX. The interpretation of the model
states and state transitions in Trusted XENIX are defined, and the access control mechanisms of Trusted
XENIX are shown to satisfy the Bell and La Padula axioms. The discretionary security and the activation ax-
ioms of Trusted XENIX are, in general, more restrictive® than those defined in the Bell and La Padula model.
A comprehensive explanation of the model interpretation for Trusted XENIX is provided in Interpretation

of the Bell and La Padula Model in Trusted XENIX [INTP].

The Trusted XENIX DTLS is provided in several manuals: TIS Trusted XENIX Commands Reference Vols.
1 and 2 [CMREF 1], [CMREF 2]; TIS Trusted XENIX System Reference [SYSREF]; iAPX 286 and 386
Programmer’s Reference Manuals [286 85], [386 86]. The system calls for the kernel and trusted processes
that are visible at the user interface are described. The syntax is provided and the errors and exceptions are

identified.

Conclusion

Trusted XENIX satisfies the B2 Design Specification and Verification requirement.

3.19 Covert Channel Analysis

Requirement

The system developer shall conduct a thorough search for covert storage channels and make a determination
(either by actual measurement or by engineering estimation) of the maximum bandwidth of each identified
channel.

Applicable Features

TIS performed a thorough analysis of the Trusted XENIX to identify covert storage channels. This analysis
is described earlier in this report.

6The Trusted XENIX model is actually less restrictive in that revocation of access rights is not instantaneous.
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Conclusion

Trusted XENIX satisfies the B2 Covert Channel Analysis requirement.

3.20 Trusted Facility Management

Requirement

The TCB shall support separate operator and administrator functions.

Applicable Features

Trusted XENIX supports separate operator and administrator functions by restricting the commands avail-
able to each role/position. This separation is implemented by establishing a unique, reserved group name
for each role. These roles, described in section 2.3.2 on page 7, are: Trusted System Programmer, System
Security Administrator, Auditor, Secure Operator, and Accounts Administrator. At log in time, the mem-
bers of each role must choose the specific group name they are to be identified with for that session. For the
remainder of the session, they are restricted to commands pertinent to that role. For example, no Secure
Operator commands can change the security attributes of any protected objects.

Conclusion

Trusted XENIX satisfies the B2 Trusted Facility Management requirement.

Additional Requirement (B3)

The following changes are made to this requirement at the B3 level:

ADD: The functions performed in the role of a security administrator shall be identified. The ADP system
administrative personnel shall only be able to perform security administrator functions after taking a distinct
auditable action to assume the security administrator role on the ADP system. Non-security functions that
can be performed in the security administration role shall be limited strictly to those essential to performing
the security role effectively.

Applicable Features

The functions performed by the various security administrators through the trusted path are described in
the System Administration Manual [SYAD]. Each administrator role is implemented as a special group that
limits the functions available for that role to essential functions. An audit record is written when anyone
assumes an administrator role.
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Conclusion

Trusted XENIX satisfies the additional provisions of the B3 Trusted Facility Management requirement.”

3.21 Configuration Management

Requirement

During development and maintenance of the TCB, a configuration management system shall be in place that
maintains control of changes to the descriptive top-level specification, other design data, implementation
documentation, source code, the running version of the object code, and test fixtures and documentation.
The configuration management system shall assure a consistent mapping among all documentation and code
associated with the current version of the TCB. Tools shall be provided for generation of a new version of
the TCB from source code. Also available shall be tools for comparing a newly generated version with the
previous TCB version in order to ascertain that only the intended changes have been made in the code that
will actually be used as the new version of the TCB.

Applicable Features

When TIS obtained the Secure XENIX code from IBM, all code and documentation were placed under TIS’s
configuration control system. All changes to the descriptive top-level specification, all design documenta-
tion, implementation documentation, source code, object code, test fixtures, and other documentation are
managed within the CM system under the control of the CCB.

Section 2.9.2 in the System Overview provides a detailed description of the configuration management pro-
cess. Changing or adding Trusted XENIX code, hardware, or documentation requires submission of a Product
Change Request (PCR) for CCB consideration. Before approving a PCR for implementation, the change
is assessed relative to its impact on the rest of the system, and all impacts to code and documentation are
identified. If the CCB gives its approval for implementing the change, a Change Tracking Report (CTR) is
used to track the change through implementation and testing. If any further impacts are identified during
implementation and testing, additional PCRs are submitted to accomplish these changes. Before a change
is formalized and made a part of the CM Library, it must again be approved by the CCB.

The Source Code Control System (SCCS) provides automated tracking of all changes to code and documen-
tation. SCCS maintains deltas between new and old versions and provides an automated tool for building
any version of the TCB from source code. A newly generated version of the TCB can be compared with the
previous version by using the diff command.

The standard Trusted XENIX protection mechanisms are used to prevent unauthorized changes to the SCCS
files. The CM librarian has complete access to the SCCS database. General users can only read SCCS files.
So while an ordinary user can read (copy) a file from SCCS, only the CM librarian can make the change
to the information managed under SCCS. In addition to the Trusted XENIX protection mechanisms, each

7 Although Trusted XENIX satisfies this requirement at the B3 level, it does not satisfy the assurance requirements above
its rated level.
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SCCS file maintains a checksum of its own contents. If a SCCS file becomes corrupted, the SCCS file will
not be processed by the commands.

TIS has presented evidence of its configuration management process to the evaluation team. The procedures
in place to support the CM process are described in section 2.9.2.

Conclusion

Trusted XENIX satisfies the B2 Configuration Management requirement.

3.22 Security Features User’s Guide

Requirement

A single summary, chapter, or manual in user documentation shall describe the protection mechanisms
provided by the TCB, guidelines on their use, and how they interact with one another.

Applicable Features

The security features of Trusted XENIX are described in the Trusted XENIX Security Features User’s Guide
[SFUG]. This manual describes how to log onto the system and how to use the various protection mechanisms
such as DAC and MAC. It also explains the use of labels and, in general, what an ordinary user needs to
know to use the security features of Trusted XENIX. Establishing a secure communication link with the
TCB is described. Also, the use of access control lists, which are used for finer access control than standard
UNIX, is explained.

Conclusion

Trusted XENIX satisfies the B2 Security Features User’s Guide requirement.

3.23 Trusted Facility Manual

Requirement

A manual addressed to the ADP system administrator shall present cautions about functions and privileges
that should be controlled when running a secure facility. The procedures for examining and maintaining the
audit files as well as the detailed audit record structure for each type of audit event shall be given. The manual
shall describe the operator and administrator functions related to security, to include changing the security
characteristics of a user. It shall provide guidelines on the consistent and effective use of the protection
features of the system, how they interact, how to securely generate a new TCB, and facility procedures,
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warnings, and privileges that need to be controlled in order to operate the facility in a secure manner. The
TCB modules that contain the reference validation mechanism shall be identified. The procedures for secure
generation of a new TCB from source after modification of any modules in the TCB shall be described.

Applicable Features

The Trusted Facility Manual for this system is composed of two documents: Starting Trusted XENIX [STXE]
and Trusted XENIX System Administration Manual [SYAD]. These two documents describe the various
operator, administrator, and privileged roles needed to operate a secure facility. They describe the separation
of privileges available to the different roles and each role’s interface functions, commands, and files. They
provide guidelines for the use of these roles to install, run and maintain a Trusted XENIX installation. Some
general cautions and warnings are also provided along with examples under each role description. These two
documents include guidelines on the consistent and effective use of the protection features of the system,
how they interact, and facility procedures, warnings, and privileges that need to be controlled in order to
operate the facility in a secure manner. Specifically, they describe the physical security concern and describe
alternatives. They also include the audit record structure, as well as details on how to examine and maintain
the audit log. The TFM also includes a substantial section providing warnings and guidance regarding the
use of STU-III devices with Trusted XENIX.

The source code is not distributed so when any changes are made, a new TCB must be obtained from TIS.
Because the source code is not distributed, neither the TCB modules which contain the reference validation
mechanism nor the procedures for generating a new TCB from source are described in the either of the two
manuals.

Conclusion

Trusted XENIX satisfies the B2 Trusted Facility Manual requirement.

3.24 Test Documentation

Requirement

The system developer shall provide to the evaluators a document that describes the test plan, test procedures
that show how the security mechsnisms were tested, and results of the security mechanisms’ functional testing.
It shall include results of testing the effectiveness of the methods used to reduce covert channel bandwidths.

Applicable Features

TIS has provided a description of the method to be used to test the Trusted XENIX kernel and the detailed
test plans for the kernel calls. The technique described (called the “Grey-Box Approach” [GLIG]) relies on
analysis of dependencies to reduce the number of test cases that need to be exercised. TIS has analyzed
Trusted XENIX version 4.0 and produced a kernel call control-synthesis graph, analyzed the dependencies,
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and produced the test plans for the kernel calls that its analysis showed to be necessary. The specific access
checks of a kernel call has shown that the untested subpaths of that kernel call join the tested path.

For Trusted Process testing, TIS used the more traditional “Black-Box” approach. The test plans are
comprehensive, clear, and usable.

TIS has analyzed and estimated covert channel bandwidths (see page 87 for more details).

Conclusion

Trusted XENIX satisfies the B2 Test Documentation requirement.

3.25 Design Documentation

Requirement

Documentation shall be available that provides a description of the manufacturer’s philosophy of protection
and an explanation of how this philosophy is translated into the TCB. The interfaces between the TCB
modules shall be described. A formal description of the security policy model enforced by the TCB shall be
available and proven that it is sufficient to enforce the security policy. The specific TCB protection mech-
anisms shall be identified and an explanation given to show that they satisfy the model. The descriptive
top-level specification (DTLS) shall be shown to be an accurate description of the TCB interface. Docu-
mentation shall describe how the TCB implements the reference monitor concept and give an explanation
why it is tamper resistant, cannot be bypassed, and is correctly implemented. Documentation shall describe
how the TCB is structured to facilitate testing and to enforce least privilege. This documentation shall
also present the results of the covert channel analysis and the tradeoffs involved in restricting the channels.
All auditable events that may be used in the exploitation of known covert storage channels shall be identi-
fied. The bandwidths of known covert storage channels, the use of which is not detectable by the auditing
mechanism, shall be provided.

Applicable Features

In Trusted XENIX the security policy model enforced by the TCB is the Bell and La Padula model. A
description of TIS’s philosophy of protection and an explanation of how this philosophy is translated into
the TCB is provided in the Interpretation of the Bell and La Padula Model in Trusted XENIX [INTP]. This
document also describes how the TCB protection mechanisms satisfy the model.

The TCB and the interfaces between the TCB modules are described in Trusted XENIX Architecture vols.
1 and 2 [KERN, TPAR]. A description of how the TCB enforces least privilege is provided in vol. 1. The
interface to the TCB is described in the DTLS.

The descriptions in The Reference Monitor of Trusted XENIX [RFMN] accurately portray how the Trusted
XENIX TCB correctly implements the reference monitor concept. A description of how the Trusted XENIX
TCB is structured adequately to facilitate testing is provided in A New Security Testing Method and its

112
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
3.25. DESIGN DOCUMENTATION

Application to the Trusted XENIX Kernel [GLIG] and Trusted XENIX Test Plan vols. 1 and 2 [KTST,
TTST.

The results of covert channel analysis is provided in Trusted XENIX Covert-Channel Identification: Poten-
tial Covert Channels [CCAID] and Trusted XENIX Covert Channel Capacity Estimation and Reduction
[CCABW] and described elsewhere in this report (see section 3.19, page 107).

The kernel packaging is described in two appendices of the kernel architecture document [KERN].

Conclusion

Trusted XENIX satisfies the B2 Design Documentation requirement.
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Chapter 4

Evaluator’s Comments

e The methods Trusted XENIX uses to maintain ACLs can lead to confusion. The acl command, which
is not accessible through the trusted shell; allows the user to manipulate ACLs while maintaining them
in the sorted order that unambiguously defines their meaning (i.e., they are sorted in order from most
specific to least specific). The acl system calls, however, which are part of the direct TCB interface do
not maintain this sorted order. When the system calls are used, assuring that the desired protection is
achieved by the proper ordering of the individual ACL components is the user’s responsibility. Because
the command and system call interfaces might both be used, any use with the system call should
maintain the order of most-specific to least-specific.

e Trusted XENIX implements a very good trusted facility management mechanism. This mechanism sup-
ports five distinct roles—Trusted System Programmer, System Security Administrator, Auditor, Secure
Operator, and Accounts Administrator, which perform role-related actions from within a restricted
environment.

e Trusted XENIX does a poor job of making use of the available hardware mechanisms provided by the
underlying system. This can be seen in multiple ways. Trusted XENIX utilizes only two of the four
hierarchical rings supported by the Intel processors—one for the kernel and the other for trusted and
untrusted subjects. Trusted XENIX implements only a single call gate to provide access to all kernel
calls, rather than making use of multiple hardware-supported call gates to automatically control access
to the kernel. Trusted XENIX could be structured to make more effective use of segmentation and
other hardware protection features. This would enhance security and provide better internal structure,
though at the expense of greater (internal) divergence from the original UNIX system on which it is

based.

e Given the desktop (and portable, in the case of the GRIDCASE 1537) nature of some of the hardware
bases of Trusted XENIX, it is likely that, in some cases, protecting the hardware portions of the TCB
will be next to impossible or may simply be overlooked. While some machines provide fairly good boot
protection and even cabinet locks, others provide no such protection whatsoever (see the TFM). In
any case, it is important that this problem is understood, and even more critical that this problem is
addressed for any installed product.

e The test plan for Trusted XENIX is very comprehensive and thorough. This is mainly credited to the
Grey Boz testing methodology.

e The system does not supply default ACLs for files or directories; instead, one must use the settings on
the protection bits to initially create an ACL, and then manually add and delete entries to obtain the
desired initial ACL.

e The client-server architecture prevents call propagation by determining whether the current session is
direct or remote. If the current connection is remote, it denies further remote connections. On one
hand, this is good in that users are prevented from confusing themselves with regard to which server
they are actually working on at any given time. On the other hand, such call propagation doesn’t
necessarily present any security risks and could provide useful site capabilities.
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e Since the STU-III devices do not support a notion of categories compatible with that implemented
by Trusted XENIX, a particular installation must be careful when configuring the sensitivity ranges
for connected STU-III devices. This is important since it is possible that though the clearance level
of a user is dominated by the negotiated STU-III key level, the STU-III may not provide adequate
protection for the user’s category set.
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Appendix A

Evaluated Hardware Components

Trusted XENIX is approved to run on a variety of hardware bases. This section 1s broken down into
sections providing information regarding machines and components that utilize a MCA bus and machines
and components that utilize an ISA bus. After each Central Unit section a set of components that are
approved for use with that central unit(s) only are listed. A final section provides information regarding
components that are bus and machine independent.

All of the central units that have been approved must utilize Intel Central Processing Units (CPUs). Each
individual section denotes the particular CPU and it’s speed.

For each central unit utilizing a MCA bus it is assumed that the standard configuration is utilized, namely
that the implementation includes the standard DMA Controller, Interrupt Controller, Timer, Real Time
Clock, Keyboard Controller, Serial Port Controller, and Parallel Port Controller. Therefore the names of
these individual components are not listed.

For each central unit utilizing an ISA bus the specific DMA Controller, Interrupt Controller, Timer, Real
Time Clock, Keyboard Controller, Serial Port Controller, and Parallel Port Controller approved for use with
the central unit is identified. Each of these central units are produced by a different vendor and utilize
different devices thus there is not a standard configuration across the machines.

Due to performance, cost, or availability a vendor may choose to use a new device within their central
units. However in order to be considered an evaluated configuration the central unit must contain either the
standard configuration in the case of the MCA bus or the particular devices (described below) in the case of

the ISA bus.

In addition each central unit must have associated with it some set of system integrity tests that can be run
periodically to validate the correct operation of the on-site hardware. In most cases the vendors of the central
unit provide a set of Power On Self Tests (POST) that provide a cursory examination of the hardware and a
separate set of advanced diagnostics that more extensively test the hardware. In some cases the diagnostics
provided by the vendor do not test the hardware to a sufficient degree and must be supplemented by TIS
created diagnostics and by diagnostics from a third party. TIS includes a diagnostic package with Trusted
XENIX that is designed to test the security machanisms of the base microprocessor. Version 3.0 of Check,/It,
by Touchstone Software Corporation 2130 Main Street, Suite 250, Huntington Beach, CA 92648, has been
approved for use as a supplemental set of diagnostic tests for peripheral devices. Check,/It can be obtained
by contacting Touchstone directly at (800) 531-0450 or (714) 969-7746 or through various software retailers.
Each central unit section indicates what diagnostics are necessary for that particular platform.

117
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
APPENDIX A. EVALUATED HARDWARE COMPONENTS

A.1 MCA Bus

A.1.1 IBM PS/2 Central Units

IBM PS/2 Model 80
IBM PS/2 Model 70
IBM PS/2 Model P70
IBM PS/2 Model T70
IBM PS/2 Model 60
IBM PS/2 Model 50

The following components must be used with an MCA bus and are approved to be used interchangeably in
the central units named above, namely the IBM PS/2 Model 50,60,70,70P,70T, and 80. Any exceptions to
this rule are noted with footnotes.

Video Display Adapters:

e IBM Display Adapter 8514/A
e IBM PS/2 Display Adapter

Fixed Disk Drive Adapters:

e IBM Fixed Disk Drive Adapter/A, Types 1,2 (ST506)
e IBM ESDI Fixed Disk Drive Adapter/A (ESDI)
e IBM PS/2 60Mb Fixed Disk Drive Adapter (ESDI)?

Floppy Diskette Drive Adapters:

e IBM PS/2 Diskette Drive Adapter
Additional communication Adapters:

e Dual Async Adapter (PS/2)
Cartridge Tape Backup Unit Adapter:

o Wangtek MCA Host Adapter, 33577-001
Memory Expansion Units:

IBM 80286 Memory Expansion

IBM PS/2 2-8MB 80286 Memory Expansion

IBM 80386 Memory Expansion

IBM 2-8MB 80386 Memory Expansion

IBM PS/2 0-8MB Expanded Memory Adapter/A?

1The IBM PS/2 60Mb Fixed Disk Drive Adapter can be used only with the IBM PS/2 model 50.
2The IBM PS/2 0-8MB Expanded Memory Adapter/A can only be used with the IBM PS/2 models 50 and 60.
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A.2 1ISA Bus

A.2.1 IBM PC/AT Central Units

e IBM PC/AT 5170 Model 099
e IBM PC/AT 5170 Model 239
e IBM PC/AT 5170 Model 339

The following components are approved to be used interchangeably in the IBM PC AT Model 099, 239 and
339. Any exceptions to this rule are noted with footnotes.

Video Display Adapters:

e IBM Monochrome Display and Printer Adapter
e IBM Color/Graphics Monitor Adapter
e TAXAN Monochrome Graphics Adapter with Parallel Port (MGP 256)

Fixed Disk Drive Adapters:

IBM Fixed Disk Adapter (ST506)

IBM AT Fixed Disk and Diskette Drive Adapter (ST506)
Adaptec ACB2310/12 (ST506)

Western Digital WD1003-WA?2 (ST506)

Floppy Diskette Drive Adapters:

e IBM AT Diskette Drive Adapter
e IBM AT Fixed Disk and Diskette Drive Adapter

DMA Controller:

o Intel 8237 DMA Controller
Interrupt Controller:

o Intel 8259 Interrupt Controller
Timer:

o Intel 8254 Timer
Real Time Clock:

e Motorola MC146818AP
Keyboard Controller:

o Intel 8742 UPI
Serial Port Controller:

e IBM Serial and Parallel Port Adapter

Parallel Port Controller:
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e IBM Serial and Parallel Port Adapter

Diagnostics: The IBM PC AT provides a set of POST diagnostics that are run automatically at boot
time. In addition a separate diskette containing extensive advanced diagnostics is also provided.

A.2.2 AST Central Unit

e AST 386/25
The following components are approved to be used in the AST 386/25.
Video Display Adapters:

e Paradise Western Digital PVGA1A Controller
Fixed Disk Drive Adapters:

e Conner CP 3104 IDE Drive (ST506)3
Floppy Diskette Drive Adapters:

e Western Digital WD37C65/A /B Floppy Disk Subsystem Controller
DMA Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:

e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:

e AST Keyboard Controller 237002-001
Serial Port Controller:

e National Semiconductor 16450
Parallel Port Controller:

e AST ACORN Parallel Port Subsystem

Diagnostics: The AST provides in system BIOS a set of Power On Start Tests that are run automatically
at boot time. In addition AST provides a System Confidence Test on a separate Utility Software disk that
determines and tests the system’s hardware configuration, including the amount of memory and displays its

3Conner Peripheral Drives provide an integrated hard disk drive and hard disk drive controller.
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findings. The System Confidence Test is not sufficient alone to meet the System Integrity requirement and
therefore a version of Check\/It 3.0 must be obtained. The CPU protection mechanism tests provided by

TIS must also be used to meet the System Integrity requirement.

A.2.3 AST Central Unit
e AST Premium 386/33

The following components are approved to be used in the AST Premium 386/33.

Video Display Adapters:

o Western Digital 90C90-JK Controller
Fixed Disk Drive Adapters:

e ST 1126 A
Floppy Diskette Drive Adapters:

e Western Digital WD37C65/A /B Floppy Disk Subsystem Controller
DMA Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:

e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:

e AST Keyboard Controller P/N 107210-007 P8274
Serial Port Controller:

e National Semiconductor 164C5H0
Parallel Port Controller:

e AST ACORN Parallel Port Subsystem

Diagnostics: The System Integrity requirment must be met by obtaining a version of Check,/IT 3.0 and

using the CPU protection mechanism tests provided by TIS.
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A.2.4 Grid Central Unit

o GRiIDCASE 1537
The following components are approved to be used in the GRiIDCASE 1537.
Video Display Adapters:

e Chips & Technology F82C455 Flat Panel/CRT VGA Controller
Fixed Disk Drive Adapters:

e Conner CP344 (ST506)*
Floppy Diskette Drive Adapters:

e National Semiconductor DP 8473 Floppy Disk Controller PLUS-2
DMA Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:

e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:

o Intel 8742 Keyboard Controller
Serial Port Controller:

e VLSI Technology VL.16452
Parallel Port Controller:

e VLSI Technology VL16452

Diagnostics: The Grid provides in system BIOS a set of Power On Start Tests that are run automatically
at boot time. In addition a separate advanced diagnostic disk may be obtained from Grid, although it is not
provided automatically. The advanced diagnostics available from Grid are not sufficient alone to meet the
System Integrity requirement and therefore a version of Check,/It 3.0 must be obtained.

A.2.5 Grid Central Unit
e GRID 386sx-MFP

*Conner Peripheral Drives provide an integrated hard disk drive and hard disk drive controller.
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The following components are approved to be used in the GRiD 386sx-MFP.
Video Display Adapters:

e Paradise Western Digital PVGA1A Controller
Fixed Disk Drive Adapters:

e Miniscribe Model 8051A (ST506)
Floppy Diskette Drive Adapters:

o Western Digital WD37C65
DMA Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:

e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:

o Intel 8742
Serial Port Controller:

e GRID 386S5X Serial
Parallel Port Controller:

e GRID 386S5SX Parallel

Diagnostics: The System Integrity requirment must be met by obtaining a version of Checky/IT 3.0 and
using the CPU protection mechanism tests provided by TIS.

A.2.6 HP Central Unit
e HP Vectra PC 386
The following components are approved to be used in the HP Vectra 386.
Video Display Adapters:
e Headland Technology HT208
Fixed Disk Drive Adapters:
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e HP IDE Fixed Disk Driver Adapter (ST506 compatible)
Floppy Diskette Drive Adapters:

e Western Digital WD37C65
DMA Controller:

e Chips & Technology 82C316 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C316 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C316 Integrated Peripheral Controller
Real Time Clock:

e Chips & Technology 82C316 Integrated Peripheral Controller
Keyboard Controller:

o INTEL P8042
Serial Port Controller:

o HP Datacom
Parallel Port Controller:

o HP Datacom

Diagnostics: The System Integrity requirment must be met by obtaining a version of Check,/IT 3.0 and
using the CPU protection mechanism tests provided by TIS.

A.2.7 NCR Central Unit
e NCR PC386sx
The following components are approved to be used in the NCR PC386sx.
Video Display Adapters:
e Paradise Western Digital PVGA1A Controller
Fixed Disk Drive Adapters:

e Conner CP3044 (ST506)/footnoteConner Peripheral Drives provide an integrated hard disk drive and
hard disk drive controller.

Floppy Diskette Drive Adapters:
e Western Digital WD37C65
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DMA Controller:
e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:
e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:
e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:
e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:
e INTEL 8742
Serial Port Controller:
e VLSI Technology VLSI 16C452
Parallel Port Controller:
e VLSI Technology VLSI 16C452

Diagnostics: The System Integrity requirment must be met by obtaining a version of Check,/IT 3.0 and
using the CPU protection mechanism tests provided by TIS.

A.2.8 NEC Central Units

e NEC PowerMate 386/25
e NEC BusinessMate 386/25

The following components are approved to be used in the NEC PowerMate 386/25 and NEC BusinessMate
386/25.

Video Display Adapters:
e Paradise Western Digital PVGA1A Controller
Fixed Disk Drive Adapters:
e Western Digital 1007TA WAH®
Floppy Diskette Drive Adapters:
e NEC D72068F6F
DMA Controller:

5The Western Digital 1007A WAH Controller provides an ST506 interface to the CPU but provides an ESDI interface with
the hard disk drive, thus it must be used with an ESDI hard disk drive.
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e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:

e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:

e NEC APC IV Series Keyboard Controller
Serial Port Controller:

e VLSI Technology VLSI 16C452
Parallel Port Controller:

e VLSI Technology VLSI 16C452

Diagnostics: The Nec Powermate and BusinessMate provide in system BIOS a set of Power On Start
Tests that are run automatically at boot time. Service diagnostics are not commonly provided with the Nec
PowerMate and therefore a version of Check,/It 3.0 must be obtained in order to meet the System Integrity
requirement. The CPU protection mechanism tests provided by TIS must also be used to meet the System
Integrity requirement.

A.2.9 Trend Central Unit

e TREND Telecommunications Limited Model 635 PC
The following components are approved to be used in the TREND 635 PC.
Video Display Adapters:

e Chips & Technology 16C452
Fixed Disk Drive Adapters:

e NCR 53C94 CQ03673 N609-3 (SCSI)
Floppy Diskette Drive Adapters:

e National Semiconductor DP 8473 Floppy Disk Controller PLUS-2
DMA Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller

Interrupt Controller:
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e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:
e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:
e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:
e Quadtel 1219
Serial Port Controller:
e VLSI Technology VLSI 16C452
Parallel Port Controller:
e VLSI Technology VLSI 16C452

Diagnostics: The System Integrity requirment must be met by obtaining a version of Checky/IT 3.0 and
using the CPU protection mechanism tests provided by TIS.

A.2.10 Unisys Central Unit
e Unisys Personal Workstation 2 Series 800/20C (820 COP)
The following components are approved to be used in the Unisys 820COP.
Video Display Adapters:
e Headland GC205-PC VGA Controller
Fixed Disk Drive Adapters:
e NCR SCSI Protocol Controller 5380
Floppy Diskette Drive Adapters:
e NCL 20-20-303 (This is the chip found on the NCR SCSI Controller 5380)
DMA Controller:
e Zymos 82C30 Poach Integrated Peripheral Controller
Interrupt Controller:
e Zymos 82C30 Poach Integrated Peripheral Controller
Timer:
e Zymos 82C30 Poach Integrated Peripheral Controller

Real Time Clock:

127
FINAL: January 1994




Final Evaluation Report TIS Trusted XENIX
APPENDIX A. EVALUATED HARDWARE COMPONENTS
e Zymos 82C30 Poach Integrated Peripheral Controller
Keyboard Controller:
e Phoenix Keyboard Controller
Serial Port Controller:
o Western Digital 16C452
Parallel Port Controller:
o Western Digital 16C452

Diagnostics: The Unisys system POST (called power-on confidence (POC) test) is BIOS resident and runs
every time the system is turned on or reset via the reset button. The test checks the 80386 processor, the
keyboard, the monitor, system memory, and some peripheral devices. A separate diskette called STARTUP
is provided. This diskette contains a menu-driven diagnostics option for most system components. The
following components are tested: system board, memory, coprocessor, CPU speed, serial port, parallel port,
diskette drives, fixed disk drives, and keyboard. A separate diskette is provided containing service diagnostics
for the VGA. The CPU protection mechanism tests provided by TIS must also be used to meet the System
Integrity requirement.

A.2.11 Wang Central Units

o WANG 382
o WANG 382T

The following components are approved to be used in the WANG 382 and 382T.
Video Display Adapters:

e Paradise Western Digital PVGA1A Controller
Fixed Disk Drive Adapters:

o Western Digital 1002 WAH (ST506)
Floppy Diskette Drive Adapters:

e Western Digital 1002 WAH
DMA Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C206 Integrated Peripheral Controller

128
FINAL: January 1994



Final Evaluation Report TIS Trusted XENIX
A.2. ISA BUS
Real Time Clock:
e Chips & Technology 82C206 Integrated Peripheral Controller
Keyboard Controller:
e P8742 Wang 89 379-3500
Serial Port Controller:
e Chips & Technology P82C605
Parallel Port Controller:
e Chips & Technology P82C605

Diagnostics: The System Integrity requirment must be met by obtaining a version of Check,/IT 3.0 and
using the CPU protection mechanism tests provided by TIS.

A.2.12 Zenith Central Unit

o Zenith Z-386/33
The following components are approved to be used in the Zenith Z-386/33.
Video Display Adapters:

e Headland GC208-PC VGA Controller
Fixed Disk Drive Adapters:

e Data Tech Corp DTC 455C 05302°
Floppy Diskette Drive Adapters:

e Data Tech Corp DTC 455C 05302
DMA Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Interrupt Controller:

e Chips & Technology 82C206 Integrated Peripheral Controller
Timer:

e Chips & Technology 82C206 Integrated Peripheral Controller
Real Time Clock:

e Chips & Technology 82C206 Integrated Peripheral Controller

8 The DTC 455C 05302 Controller provides an ST506 interface to the CPU but provides an ESDI interface with the hard
disk drive, thus it must be used with an ESDI hard disk drive.
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Keyboard Controller:
e Zenith 7386 Keyboard Controller
Serial Port Controller:
e VLSI Technology 16C452
Parallel Port Controller:
e VLSI Technology 16C452

Diagnostics: The Zenith 386 provides a power up self test as a function of the Multi-Function Monitor,
MFM-300 two-ROM set firmware. In addition to the POST, additional menu-selectable diagnostic tests can
be run from the keyboard by typing TEST at the MFM prompt. The advanced diagnostics provided with
the Zenith 386 are not sufficient alone to meet the System Integrity requirement and therefore a version of
Checky/Tt 3.0 must be obtained. The CPU protection mechanism tests provided by TIS must also be used
to meet the System Integrity requirement.

A.3 Generic ISA Components

The following components designed to be used with an ISA bus and are approved to be used with any of the
central units list above that provide an ISA bus. Any exceptions to this rule are noted with footnotes.

A.3.1 Memory Expansion Units, ISA Bus and Machine Independent

e IBM 128KB/640KB Memory Expansion
e IBM 512KB/2MB Memory Adapter
e IBM 256KB Memory Expansion

A.3.2 Cartridge Tape Backup Unit Adapter
o Wangtek PC-02 Host Adapter, 30631-001

A.4 Generic BUS/Machine Independant Components

The following components are Bus Independent and Machine Independent and are approved to be used with
any of the central units listed above. Any exceptions to this rule are noted with footnotes.

A.4.1 TFixed Disks

o IBM PC/AT 30MB Fixed Disk (ST506)
e IBM 3.5 inch 20MB Fixed Disk (ST506)
e IBM 5.25 inch 44MB Fixed Disk (ST506)
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CDC Swift (94355-100) (ST506)

IBM 5.25 inch 70MB Fixed Disk (ESDI)
IBM 5.25 inch 115MB Fixed Disk (ESDI)
IBM 5.25 inch 314MB Fixed Disk (ESDI)
IBM 3.5 inch 60MB Fixed Disk (ESDI)
IBM 3.5 inch 120MB Fixed Disk (ESDI)
IBM 3.5 inch 30MB Fixed Disk (ESDI)
Miniscribe 3180E 155MB (ESDI)
Miniscribe 8051A 20MB (ESDI)

NEC P/N 134-500535-115 339 MB (ESDI)
Quantum Pro Drive Series 40 MB (SCSI)
Quantum Pro Drive Series 170S 170 MB (SCSI)

Quantum Pro Drive Series 170A 170 MB (ST506)

Rodime Europe R03130T 216 MB (SCSI)

A.4.2 Floppy Diskette Drives

Basically any Floppy Diskette Drive that supports the IBM AT Standard Interface can be used with the
system. Some examples of drives that have been used by TIS include the following:

A .4.

EPSON 1.44 MB 3.5” F1. Drv. SMD-1000
EPSON 1.44 MB 3.5” Fl. Drv. SMD-349
IBM 1.2 MB 5.25” Floppy Disk Drive

IBM 1.44 MB 3.5” Disk Drive

IBM 360 KB 5.25” Floppy Disk Drive

IBM 720 KB 3.5” Disk Drive

Mitsubishi 1.2 MB 5.25” Fl. Drv. MF504B-318

NEC 1.2 MB 5.25” Fl. Drv. P/N 134-500357-007-0
SONY 1.44 MB 3.5” Fl.
SONY 1.44 MB 3.5” Fl.
SONY 1.44 MB 3.5” Fl.
TEAC 1.2 MB 5.25” Fl.
TEAC 1.44 MB 3.5” Fl.
TEAC 1.44 MB 3.5” Fl.

Drv.
Drv.
Drv.
Drv.
Drv.
Drv.

MT-F17TW37D
MT-F17W42D
MT-F73W01D

FD-35GFR-541-U

FD-235HF
FD-216HF

Toshiba 1.2 MB 5.25” F1. Drv. ND-08DE-6

3 Monitors

CGA Color/Monochrome Monitors
EGA Color/Monochrome Monitors

Monochrome Monitors

MCGA Color/Monochrome Monitors
VGA Color/Monochrome Monitors
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A.4.4 Math Co-Processors

e INTEL 80287 Math Co-processor (use with 286 based machines)
e INTEL 80387 Math Co-processor (use with 386 based machines)

A.4.5 Printers

The following list is an identified subset of the printers that are usable in the evaluated configuration. Trusted
XENIX filters all data that goes to the printer such that only the hex characters 00 (null), 08 (backspace),
09 (horizontal tab), 0A (new line), 0C (form feed), 0D (carriage return), and 20 through 7E (standard ASCII
characters) are sent to the printer. Hence, any printer that simply prints (as opposed to interpreting as some
command) this set of characters is acceptable in the evaluated configuration).

NEC Spinwriter 8800
Panasonic KX1191
Star NX-1000

IBM Proprinter I1

A.4.6 Cartridge Tape Backup Unit
e Wangtek Cartridge Tape Unit 5125K/5150PK
In addition, the following components may be used with the system:

e Any ASCII terminals
e Any RS232 cables

e Any printer cables
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Evaluated Software Components

Trusted XENIX version 4.0
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The following table contains a list of acronyms that are used in the report.

| Acronym | Definition || Acronym | Definition
AA Accounts Administrator 1P Instruction Pointer
ACL Access Control List IPC Inter-process communication
ADP Automated Data Processing KB Kilobyte
BIOS Basic Input/Output System LDT Local Descriptor Table
CCB Change Configuration Board MAC Mandatory Access Control
Cl Configuration Item MB Megabyte
CM Configuration Management MHz Megahertz
CMOS Complementary Metal-Oxide NCSC National Computer Security Center
Semiconductor NMI Non-Maskable Interrupt
CPL Current Privilege Level 0S Operating System
CPL Current Process Level PCR Product Change Request
CPU Central Processing Unit PC Personal Computer
CS Code Segment Selector ROM Read Only Memory
CTR Change Tracking Report SAK Secure Attention Key
DAC Discretionary Access Control SCCS Source Code Control System
DMA Direct Memory Access SFUG Security Features Users’ Guide
DPL Descriptor Privilege Level SO Secure Operator
DS Data Segment Selector SS Stack Segment Selector
DTLS Descriptive Top Level Specification SSA System Security Administrator
DoD Departm.ent of Defense TCB Trusted Computing Base
EOF End of File TCSEC Trusted Computer System
EPL Evaluated Products List Evaluation Criteria
ES Extra Segment Selector TFM Trusted Facility Manual
GDT Global Descriptor Table TP Trusted Process
GDTR Global Descriptor Table Register TSH Trusted Shell
GPM Generalized Privilege Mechanism TSP Trusted Systems Programmer
IDT Interrupt Descriptor Table TSS Task State Segment
IOPL Input/Output Privilege Level
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